Return to search

A Comparison of Data Transformations in Image Denoising

The study of signal processing has wide applications, such as in hi-fi audio, television, voice recognition and many other areas. Signals are rarely observed without noise, which obstruct our analysis of signals. Hence, it is of great interest to study the detection, approximation and removal of noise.  In this thesis we compare two methods for image denoising. The methods are each based on a data transformation. Specifically, Fourier Transform and Singular Value Decomposition are utilized in respective methods and compared on grayscale images. The comparison is based on the visual quality of the resulting image, the maximum peak signal-to-noise ratios attainable for the respective methods and their computational time. We find that the methods are fairly equal in visual quality. However, the method based on the Fourier transform scores higher in peak signal-to-noise ratio and demands considerably less computational time.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-375715
Date January 2018
CreatorsMichael, Simon
PublisherUppsala universitet, Statistiska institutionen
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds