Nesta tese apresentamos uma contribuição para o estudo da transição do retrato de fase de uma equação diferencial descontínua específica ao longo de uma linha de descontinuidade. A equação diferencial que tratamos neste trabalho é a das linhas de curvatura principal de uma superfície S contendo uma curva distinguida B e imersa em R^3. A linha de descontinuidade é a curva B, a qual é o bordo comum de duas superfícies suaves justapostas que formam S. Na primeira parte do trabalho consideramos a superfície seccionalmente suave, S = S+ U B U S-, obtida pela justaposição de S+ e S- ao longo do bordo comum B. O estudo da configuração principal de S nos casos em que as linhas de curvatura principal das superfícies S+ e S- tem contato quadrático ou cruzam transversalmente B foi feito por comparação com a configuração principal de uma superfície suave, obtida de S pelo processo da \"regularização\" ao longo da curva de descontinuidade B. Na segunda parte do trabalho estudamos as linhas de curvatura principal de uma superfície S em R^3 com bordo B e da superfície suave obtida de S através dos processos de engrossamento e regularização definidos por Garcia e Sotomayor em [5], onde os autores consideraram o caso genérico, sem pontos umbílicos e contato quadrático de uma linha de curvatura principal com B. Damos aqui continuidade ao estudo feito em [5] analisando o caso de contato cúbico com o bordo B. Obtivemos que dos pontos da curva bordo comum B de contato quadrático e de cruzamento transversal emergem, sobre a superfície regularizada, pontos umbílicos Darbouxianos dos tipos D1 e D3, enquanto que, para o ponto sobre B de contato cúbico obtivemos pontos umbílicos Darbouxianos dos tipos D1, D2 e D3 e também pontos umbílicos não Darbouxianos dos tipos D12 e D23. [5] Garcia, R., and Sotomayor, J. Umbilic and tangential singularities on configurations of principal curvature lines. Anais da Academia Brasileira de Ciências 74, 1 (2002), 117. / In this work we present a contribution to the study of the transition of the phase portrait of a specific discontinuous differential equation along a line of discontinuity. The differential equations under consideration will be that of the principal curvature lines of a surface S with a distinguished curve B immersed in R^3, where the line of discontinuity is the curve B which is the common border of two smooth surfaces attached to make up S. In the first part of the work we consider a piecewise smooth surface S = S+ U B U S-, obtained by the juxtaposition of two smooth surfaces S+ and S- along their common border B. The analysis of the principal configuration of S in the cases where the principal curvature lines of the surfaces S+ and S- have quadratic contact or cross transversally B was carried out by comparison with a smooth surface, obtained from S by the \"regularization\" along the discontinuity curve B. In the second part of the work we study the principal curvature lines of a surface S in R^3 with boundary B and of the smooth surface obtained from S by thickening and smoothing introduced by Garcia and Sotomayor in [5], where they considered the generic case of no umbilic points and at most quadratic contact of principal lines with B. Here we pursue the study in [5] and analyze the case of cubic contact with the border B. We established that while from quadratic contact points with B emerge on the smoothed surface Darbouxian umbilics of D1 and D3 types, from the cubic contact points appear Darbouxian umbilics of types D1, D2 and D3 as well as non Darbouxian points of types D12 and D23. [5] Garcia, R., and Sotomayor, J. Umbilic and tangential singularities on configurations of principal curvature lines. Anais da Academia Brasileira de Ciências 74, 1 (2002), 117.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-03102014-112150 |
Date | 26 June 2014 |
Creators | Miranda, Gláucia Aparecida Soares |
Contributors | Tello, Jorge Manuel Sotomayor |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0083 seconds