Orientador: Gerson Francisco / Banca: Dora de Castro Rubio / Banca: Fernando Fagundes Ferreira / Banca: Iberê Luis Caldas / Banca: Carlos Henrique Barbosa Gonçalves / Resumo: Nosso trabalho tem como objetivo desenvolver um algoritmo de detecção de solitons em presença de tensão superficial, visando construir num certo espaço de parâmetros, uma representação estrutural dos comportamentos de bifurcação e dispersão destas ondas solitárias. No capítulo 1 fazemos uma abordagem histórica, desde o descobrimento do primeiro soliton em 1834 num canal para barcos até aplicações atuais em diversas áreas como, por exemplo, em lasers. No capítulo 2 estabelecemos a relação entre soliton e órbita homoclínica, reunindo conceitos e propriedades de sistemas hamiltonianos reversíveis. Realizamos uma fundamentação teórica assim como propomos o teorema 1, ponto de partida para a construção do nosso algoritmo que possui hipóteses bastante abrangentes: a existência de uma variedade instável e de uma função de reversibilidade para o sistema em análise. No capítulo 3 definimos um modelo de sistema dinâmico que atende as hipóteses citadas no capítulo anterior e possui diversas aplicações para solitons. Suas características são demonstradas e, através de métodos clássicos, apontamos os resultados que devem ser confirmados por nossa abordagem numérica. Desenvolvemos, então, uma estratégia para o algoritmo. Nos capítulos 4 e 5 criamos analíticamente modelos que possuem solitons pré-determinados e aplicamos o algoritmo com sucesso, confirmando sua existência e apontando peculiaridades no espaço de parâmetros, que apresenta configurações geométricas originais de comportamentos já abordados por outros autores através de métodos tradicionais. Nos capítulo 6 criamos um modelo analiticamente mais simples que os dos capítulos anteriores, com o intuito de verificar a persistência dos resultados encontrados. O espaço de parâmetros mostra, de forma inesperada, comportamento mais complexo e consequente bifurcações mais... / Abstract: We study the existence of solitons for reversible Hamiltonian systems taking the family of differential equations +au"- u+f{u, 6) = 0 as a model, where f is an analytic function and a, b real parameters. These equations are also important in other physical situations such as the existence of "finite energy" stationary States of partial differential equations, but no assumptions of any kind of discrete symmetry is made and the analysis here developed can be extended to others Hamiltonian systems and successfully employed in situations where standard methods fail. We reduce the problem of computing these orbits to that of finding the intersection of the unstable manifold with a suitable set and then apply it to concrete situations. We determine solitary waves Solutions and also build a fase transition diagram in the space of parameters a and b, giving a picture of the structural distribution and a geometrical view of solitons bifurcations and dispersion / Doutor
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000854745 |
Date | January 2008 |
Creators | Fonseca, André. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Física Teórica. |
Publisher | São Paulo, |
Source Sets | Universidade Estadual Paulista |
Language | Multiple languages, Portuguese, Texto em português, resumos em inglês e português |
Detected Language | Portuguese |
Type | text |
Format | vii, 100 f.: |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0021 seconds