Return to search

Explorando recursos de estatística espacial para análise da acessibilidade da cidade de Bauru / Exploring spatial statistics tools for an accessibility analysis in the city of Bauru

A acessibilidade está relacionada com a maneira como a disponibilidade de transportes e os usos do solo afetam os indivíduos na realização de viagens para o desenvolvimento de suas atividades habituais. Freqüentemente se assume que os moradores de baixa renda da periferia são os mais afetados pela falta de acesso aos meios de transporte. A questão subjacente a esta afirmação, no entanto, permanece sem uma resposta definitiva: o nível de renda, por si só, seria um indicativo do nível de acessibilidade? O objetivo deste estudo é explorar a união de ferramentas de estatística espacial e SIG (Sistema de Informações Geográficas) com um propósito específico, que é o de analisar as relações entre aspectos da distribuição espacial de características da população (como a renda, por exemplo) de uma cidade média brasileira e os diversos níveis de acessibilidade por diferentes modos de transporte nela observados, buscando possíveis respostas para esta pergunta. Quando se utiliza procedimentos de visualização e classificação de dados espaciais comuns em SIG, nem sempre as informações são diretamente perceptíveis. Logo, deve-se utilizar ferramentas que ampliem as possibilidades de compreensão e análise dos dados. Inicialmente, as ferramentas selecionadas para uso neste trabalho são apresentadas e discutidas quanto à sua aplicação e utilização na análise proposta. Para tal foram utilizados dados coletados em uma pesquisa origem–destino (O-D) realizada na cidade de Bauru - SP, agrupados por setores censitários e adicionados ao SIG, aplicando técnicas de estatística espacial utilizadas para entidades do tipo área. Os resultados obtidos são apresentados na forma de mapas e de índices que medem a associação espacial global e local entre estas zonas. Uma das conclusões interessantes da aplicação foi a identificação de regiões da cidade com dinâmica particular, que contrariam o padrão global observado nas demais partes da área urbana. Pôde-se constatar ainda particularidades a respeito do uso de cada modo de transportes. O modo automóvel como motorista, por exemplo, possui agrupamento espacial bem definido no nível de renda alta tanto nas regiões de periferia, como nas de transição e central. Já o modo ônibus é predominantemente utilizado nas zonas de renda baixa das regiões de periferia e transição, enquanto que os modos não motorizados possuem uma dinâmica bem diversificada em toda a área urbana. Estes e outros resultados do estudo de caso deixam claro que as análises de estatística espacial em ambiente SIG criam uma ferramenta para ampliar a análise convencional de acessibilidade em transportes / Transportation accessibility is directly related to the level of transportation supply and land uses and the way they affect individuals in their trip desires for accomplishing regular-basis activities. It is often assumed that low-income segments of the population living at the periphery of the cities are those affected the most by poor conditions of transportation accessibility. There is a subjacent question behind this statement, however, which is: can the income level or the location of an individual alone explain his/her accessibility level? In order to look for answers to this question, the aim of this study is to analyze, making use of spatial statistics tools in a GIS (Geographic Information System) environment, the relationships between accessibility and income and their geographical distributions in a medium-sized Brazilian city. The application of the most commonly used GIS resources, such as visualization and spatial data classification tools, not always assures a full comprehension of the phenomenon under analysis. As a consequence, many problems require tools that enhance the possibilities of observation and analysis. As tools with this characteristic have been used in this work, they were initially introduced. Thereafter, the possibilities of use of these tools in the problem analyzed were also discussed. Data of an origin-destination (O-D) survey carried out in the city of Bauru, located in the state of São Paulo, which brings information about four different transportation modes, were used in this study. Such data, grouped following the census tracts, were carefully examined in a Geographic Information System in order to look for spatial patterns of accessibility that are not visible in the traditional approaches. The results of the analysis are presented in maps and as indices that are able to capture glabal and local spatial association patterns in areas. One of the interesting outcomes of the application was the identification of regions with particular dynamics, which go against the pattern found in the overall urban area. Particularities regarding each particular transportation mode have also been noticed. The zones where the automobile is most used (by drivers, not by passengers) are spatially clustered, regardless if the zone is at the periphery, transition zone or central area of the city. The bus trips are predominantly carried out in low-income areas of the periphery and transition rings, while the non-motorized modes (walk and bicycle) have shown a very diversified dynamics in the entire urban area. This and other results of the case study clearly indicate that spatial statistics analyses in a GIS environment create a powerful tool to extend conventional transportation accessibility analysis

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-10032005-064613
Date04 June 2004
CreatorsAna Paula Krempi
ContributorsAntonio Nelson Rodrigues da Silva, Maria Teresa Françoso, Sergio Antonio Rohm
PublisherUniversidade de São Paulo, Engenharia de Transportes, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds