Les glissements de terrain constituent un risque naturel majeur à l’origine de dégâts matériels et humains considérables. Les séismes sont l’une des principales causes de leur déclenchement dans les orogènes actifs. Dans la zone épicentrale, le passage des ondes sismiques perturbe le champs de contraintes local ce qui peut provoquer le dépassement du seuil de stabilité des versants. La probabilité de déclenchement d’un glissement de terrain sismo-induit sur une pente donnée est donc fonction de facteurs liés au mouvement du sol et aux caractéristiques géologiques et topographiques de celle-ci. Très peu de données sismiques sont disponibles sur les versants et les modèles d’interpolation sont peu précis. Or le mouvement sismique peut s’avérer très variable à l’échelle d’un bassin du fait de la présence d’effets de site. L’étude de la réponse sismique d’un relief taïwanais nous permet de documenter ces effets et de prendre connaissance de la complexité du mouvement enregistré sur ce relief à la suite du passage de l’onde. Un réseau de six stations larges-bandes a été déployé, au travers de ce relief large d’environ 3km. Entre mars 2015 et juin 2016, ce réseau a permis d’enregistrer la réponse des sites à plus de 2200 séismes régionaux (magnitude Ml>3, distance hypocentrale<200km). Bien que distants de quelques centaines de mètres, les sites présentent tous une réponse qui leur est caractéristique résultant d’une combinaison complexe entre la topographie et la géologie du site. A fréquences modérées, correspondant à des longueurs d’ondes du mouvement pouvant contribuer au déclenchement de glissements de terrain, l’amplification du mouvement sismique est principalement due à la géologie locale et non à la topographie, comme montré par les indicateurs classiques (SSR, PGA, PGV et Arias) extraits des réponses des stations aux séismes. La topographie semble néanmoins jouer un rôle dans la durée du mouvement sismique fort aux stations situées sur les crêtes et en bordure de bassin sédimentaire, par effet de résonance et génération d’ondes de surface. La contribution prédominante de la géologie dans le déclenchement des glissements de terrain sismo-induits est également montrée par l’analyse de leur position sur les versants pour les glissements associés aux séismes de Northridge (Mw 6.7, 1994, Etats-Unis), de Chi-Chi (Mw 7.6, 1999, Taiwan), et de Wenchuan (Mw 7.9, 2008, Chine). En effet, bien que les glissements sismo-induits se localisent statistiquement plus haut sur les versants que les glissements d’origine climatique, on note que cette tendance est fortement modulée par la géologie des bassins. En fonction des « attracteurs », tels que des failles ou forts contrastes lithologiques, présents dans les bassins, les glissements tendent à se déclencher plus ou moins haut sur les versants, là où le potentiel de rupture est plus fort. Les propriétés mécaniques des pentes sont peu contraintes dans les zones montagneuses. Souvent leurs paramètres géotechniques sont estimés à partir des cartes géologiques régionales, or ils peuvent varier fortement pour une même lithologie d’un bassin à un autre. En considérant un modèle frictionnel simple de stabilité des pentes, on propose d’inverser des paramètres de type Coulomb à partir de la distribution des pentes des glissements de terrain sismo-induits à l’échelle des bassins dans les zones épicentrales des séismes de Northridge, Chi-Chi et Wenchuan. La variation spatiale de ces paramètres semble cohérente avec celle de la lithologie et la profondeur des sols. / Landslides are a major natural hazard that cause significant damages and casualties to people. Earthquakes are one of their main triggers in active mountain belts. In epicentral area, the passage of seismic-waves that disrupt the stress-field, leads the slope stability threshold to be exceeded. Co-seismic slope failure probability thus depends on complex interactions between the ground-motion and the slope geology and geometry. A few seismic data are available on mountain slopes and the resolution of ground-motion models is generally low. Yet strong variation of ground-motion from one ridge to another can be felt due to site effects. We document site effects across topography and show the complexity of slope responses to earthquakes using a seismic network set across a Taiwanese ridge. Six broadband seismometers were set along the profile of this 3km wide ridge. From March 2015 to June 2016, more than 2200 earthquakes (magnitude Ml>3 and hypocentral distance<200km) were recorded. Although the sites are within a distance of hundreds of meters they all show different characteristic responses that are related to a complex combination of the geology and topography of the sites. At medium frequency corresponding to groundmotion wavelength that could affect slope stability, the ground-motion amplification is mostly related to the local geology and the topographic effect seems relatively negligible as attested by current indicators measured at the stations (PGA, PGV, Arias, SSR). However the duration of strong ground-motion at the ridge crests and slope toe seems to be related to possible resonance effects and surface wave generation due to the geometry of the topography. The strong contribution of the geology to co-seismic landslide trigger is demonstrated by the analysis of their position along hillslopes for the co-seismic landslides triggered by the Northridge earthquake (Mw 6.7, 1994, USA), the Chi-Chi earthquake (Mw 7.6, 1999, Taiwan), and the Wenchuan earthquake (Mw 7.9, 2008, China). Indeed, although co-seismic landslides are statistically located higher on hillslopes than the rainfall-induced landslides, we show that this tendency is strongly modulated by the geology. According to the “potential landslides attractiveness” of geological structures, such as faults or lithological contrasts, present in the watershed, the slope failure would occur more or less upslope, where the failure probability is the highest.Slope mechanical properties are not well constrained in mountain area. Their geotechnical parameters are usually estimated using information provided by geological maps, but even for the same lithology they can strongly differ for one basin to another. Considering one simple friction model for seismic slope stability, we propose to invert Coulomb related parameters using the slope distributions of the landslides triggered by the Northridge, Chi-Chi and Wenchuan earthquakes. The spatial variation of these parameters seems to be in agreement with the lithology and soil depth at the first order.
Identifer | oai:union.ndltd.org:theses.fr/2019PSLEE006 |
Date | 16 April 2019 |
Creators | Rault, Claire |
Contributors | Paris Sciences et Lettres, Lyon-Caen, Hélène, Meunier, Patrick |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0142 seconds