Explaining the work-hardening behavior of crystalline materials and the size dependent plasticity has been a long lasting problem. Plastic deformation mainly arises from the collective motion of dislocations. Although individual dislocation processes are well studied, the study of the overall effects of these processes was challenging before the emergence of computer modeling. Of the computer simulation techniques, discrete dislocation dynamics (DDD) is the most suitable method to model thin films at the micron scale and below. This method allows us to study the quantitative effects of certain mechanisms. / Engineering and Applied Sciences
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/12271796 |
Date | January 2014 |
Creators | Mohammad Davoudi, Kamyar |
Contributors | Vlassak, Joost J. |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | closed access |
Page generated in 0.0017 seconds