Return to search

MAGMA GENESIS AND COMPOSITION OF THE SLAB-DERIVED FLUIDS BENEATH THE SE MARIANA INTRAOCEANIC ARC, WESTERN PACIFIC

Subduction zones are places where one hydrated oceanic plate goes underneath another plate, and releases its fluids into the overlying mantle wedge. Slab-derived fluids play a key role in subduction zone processes. They serpentinize the cold forearc mantle at shallow depths; and deeper, they trigger hydrous mantle melting beneath the arc volcanoes and sometimes at backarc basin (BAB) spreading center. Examining the composition of arc and BAB magmas helps understanding genesis of subduction-related magmas, nature and composition of their mantle sources and slab-derived fluids. However, investigating such processes at shallow subduction zones is challenging, because the cold forearc mantle generally does not melt. Here, I investigate an unusual region in the southernmost Mariana convergent margin in the Western Pacific, near the Challenger Deep. The SE Mariana forearc stretched to accommodate opening of the southernmost Mariana Trough ~5Ma ago, opening the SE Mariana forearc rift (SEMFR) and causing seafloor spreading ~2.7-3.7Ma ago. The subducted slab beneath SEMFR deepens from <50km to ~100km, thus studying SEMFR lavas provides a unique opportunity to understand shallow subduction processes. By examining the major and trace element composition, the Pb-Nd-Sr isotopic ratios and the volatile contents (H2O, CO2, Cl, S, F) of SEMFR basalts, associated glassy rinds and olivine-hosted melt inclusions (Ol-MI) collected during three cruises (YK08-08, YK10-12, TN273), I show that: (i) SEMFR lavas were produced by adiabatic decompression melting of depleted asthenospheric BAB-like mantle at ~30±6.6 km depth and 1224±40oC; (ii) Ol-MI represent hydrous melts trapped by forearc mantle olivines. Xenocrysts were entrained with SEMFR basalts during ascent; (iii) SEMFR mantle flowed from the forearc towards the arc volcanoes and was metasomatized by shallow aqueous fluids; (iv) SEMFR shallow fluids are more aqueous than the fluids released beneath the Mariana arc and Mariana BAB; (v) the aqueous slab-derived fluids and the volatile fluxes are greatest at ~50-100km slab depth, suggesting that the minerals from the subducting plate mostly broke down beneath the arc to release their fluids. Such results provide new insights into shallow subduction processes, as previous studies showed that volatile fluxes and aqueous slab-derived fluids should increase toward the trench.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00824074
Date17 April 2013
CreatorsRibeiro, Julia
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0025 seconds