The viscosities of a set of silicone oils containing different size ranges of charcoal or paraffin particles as well as the viscosities of silicone oil foams were measured at room temperature in order to determine the effect of dispersed phase on the viscosity of a liquid and its effect on foaming ability. The effective viscosity of the samples increased with volume fraction of the second phase. The foaming ability was improved by the presence of the particles. The improved foaming effect was for the most part not a result of the increased viscosity. No connection between the particle size and the effective viscosity could be determined. On the other hand particle morphology and the particle size distribution had effect on the effective viscosity. The viscosity data were compared with a number of existing equations for the estimation of effective viscosity. Einstein-Roscoe equation is suitable for two-phase mixtures containing globular particles with narrow particle size distribution and low interfacial tension. New mathematical models are required for effective viscosity prediction, where the suspending phase viscosity, effect of the interfacial tension, as well as the particle morphology should be taken in consideration.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-133495 |
Date | January 2009 |
Creators | Albertsson, Galina |
Publisher | KTH, Mikro-modellering |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds