Return to search

Efficient Sampling of Gaussian Processes under Linear Inequality Constraints

In this thesis, newer Markov Chain Monte Carlo (MCMC) algorithms are implemented and compared in terms of their efficiency in the context of sampling from Gaussian processes under linear inequality constraints. Extending the framework of Gaussian process that uses Gibbs sampler, two MCMC algorithms, Exact Hamiltonian Monte Carlo (HMC) and Analytic Elliptical Slice Sampling (ESS), are used to sample values of truncated multivariate Gaussian distributions that are used for Gaussian process regression models with linear inequality constraints. In terms of generating samples from Gaussian processes under linear inequality constraints, the proposed methods generally produce samples that are less correlated than samples from the Gibbs sampler. Time-wise, Analytic ESS is proven to be a faster choice while Exact HMC produces the least correlated samples.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-176246
Date January 2021
CreatorsBrahmantio, Bayu Beta
PublisherLinköpings universitet, Statistik och maskininlärning
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds