This thesis reports a detailed investigation into the use of the Shear Strength Reduction (SSR) method to determine factor of safety values in discontinuum models using the Universal Distinct Element Code. The SSR method depends on the definition of failure within the model and two different criteria were compared: the numerical unbalanced force definition and a more qualitative displacement-monitoring based method. A parametric study was first undertaken, using a simple homogeneous rock slope, with three different joint networks representing common kinematic states. Lessons learned from this study were then applied to a more complex case history used for validation of the SSR method.
The discontinuum models allow for the failure surface to propagate based on constitutive models that better idealize the rockmass than simpler methods such as limit equilibrium (e.g. either method of slices or wedge solutions) and even numerical continuum models (e.g. finite difference, finite element). Joints are explicitly modelled and can exert a range of influences on the SSR result. Simple elasto-plastic models are used for both the intact rock and joint properties. Strain-softening models are also discussed with respect to the SSR method. The results presented highlight several important relationships to consider related to both numerical procedures and numerical input parameters.
The case history was modelled similar to how a typical forward analysis would be undertaken: i.e. simple models with complexities added incrementally. The results for this case generally depict a rotational failure mode with a reduced factor of safety due to the presence of joints within the rockmass when compared to a traditional limit equilibrium analysis. Some models with large persistence of steeply dipping joints were able to capture the actual failure surface. Softening models were employed in order to mimic the generation and propagation of joints through the rockmass in a continuum; however, only discontinuum models using explicitly defined joints in the model were able to capture the correct failure surface.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU./2492 |
Date | 11 1900 |
Creators | Fournier, Mathew |
Publisher | University of British Columbia |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | 38050963 bytes, application/pdf |
Page generated in 0.0015 seconds