Return to search

Rethinking Smart Home Design: Integrating Architectural Perspectives and Technologically-driven Design Thinking within a Framework

Smart homes, equipped with sensing, actuation, communication, and computation capabilities, enable automation and adaptation according to the occupants' needs. These capabilities work together to build holistic spatial and living experiences for the occupants. Smart technologies significantly impact spatial experiences, making smart home design an architectural problem along with a technological problem. Nevertheless, smart home research focuses primarily on standalone technological solutions, where the spatial/architectural aspect is largely absent. We argue that addressing the technological aspects isolated from the spatial context leads to reduced experiences for the users/occupants, as this practice blocks the pathways to develop holistic and innovative smart home solutions. Hence, we focus on bridging the gap between architectural and technological components in smart home research. To this end, we studied the design of smart homes from related disciplines, i.e., architecture, human-computer interaction, human--building interaction, industrial manufacturing, and modular assembly. Our research used the triangulation technique to consult with subject matter experts (researchers, practitioners, and professors of related disciplines) to understand current design processes. We conducted ethnographic studies, focus group studies, and in-depth interviews and identified challenges and best practices for smart home design process. Our investigation recognizes a nascent research problem where the technological and architectural aspects come together in the design thinking of smart home designers. We expanded the scope of design thinking to include three primary elements of smart homes- embedded technology, architectural elements, and occupants' needs. This multidisciplinary and complex process requires a well-defined design framework to methodically address all the issues associated with it. Hence, we developed a user-centered design framework, ArTSE, through an iterative Delphi study to guide the smart home design process. ArTSE stands for "Architecture and Technology in Smart Home DEsign". This framework guides user requirements collection using HCI models, technology decision making, interaction modalities selection, the decision support system for schematic design, technology infrastructure development, and production of the necessary documentation. This framework is an evolution of the normative theory in the architectural design process that caters to the needs of smart home design. For defining implementation strategies, we applied the framework to a case study-- a smart reconfigurable space design project. Overall, we document different aspects of the smart home design process and provide a comprehensive guideline for designers, researchers, and practitioners in this area. / Doctor of Philosophy / Smart homes have automation systems so that occupants can monitor and control lighting, heating, electronic devices, etc. remotely using phones/computers. Smart home devices and components are equipped with sensing, actuation, communication, and computation capabilities, to enable automation and adaptation according to the occupants' needs. These capabilities work together to build holistic spatial and living experiences for the occupants. Smart technologies significantly impact spatial experiences, making smart home design an architectural problem along with a technological problem. Nevertheless, smart home research focuses primarily on standalone technological solutions, where the spatial/architectural aspect is largely absent. We argue that addressing the technological aspects isolated from the spatial context leads to reduced experiences for the occupants, as this practice blocks the pathways to develop innovative smart home solutions. Hence, we focus on bridging the gap between architectural and technological components in smart home research. To this end, we studied the design of smart homes from related disciplines, i.e., architecture, human-computer interaction, human--building interaction, industrial manufacturing, and modular construction. We consulted with subject matter experts (researchers, practitioners, and professors of related disciplines) to understand current design processes. We conducted ethnographic studies, focus group studies, and in-depth interviews and identified challenges and best practices for smart home design process. Our investigation recognizes a nascent research problem where the technological and architectural aspects come together in the design thinking of smart home designers. We expanded the scope of design thinking to include three primary elements of smart homes- embedded technology, architectural elements, and occupants' needs. This multidisciplinary and complex process requires a well-defined design framework to methodically address all the issues associated with it. Hence, we developed a user-centered design framework, ArTSE, through an iterative procedure to guide the smart home design process. ArTSE stands for "Architecture and Technology in Smart Home DEsign". This framework guides user requirements collection using HCI models, technology decision making, interaction modalities selection, the decision support system for schematic design, technology infrastructure development, and production of the necessary documentation. For defining implementation strategies, we applied the framework to a case study-- a smart reconfigurable space design project. Overall, we document different aspects of the smart home design process and provide a comprehensive guideline for designers, researchers, and practitioners in this area.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/105654
Date25 October 2021
CreatorsDasgupta, Archi
ContributorsComputer Science, Gracanin, Denis, Jones, James R., Knapp, Richard Benjamin, Bowman, Douglas A., Matkovic, Kresimir
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0086 seconds