Return to search

A Functional Role for Doscoidin Domain Receptor 1 (Ddr1) in the Regulation of Inflmmation and Fibrosis During Atherosclerotic Plaque Development

Collagens are abundant components of the extracellular matrix in the atherosclerotic plaque. In addition to contributing to lesion volume and mechanical stability, collagens can influence the behavior of macrophages and smooth muscle cells (SMCs) and have profound effects on both inflammation and fibrosis during lesion development. The aim of this thesis was to define a functional role for the discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine kinase, in murine models of atherogenesis.
In our first study, using Ddr1+/+;Ldlr-/- and Ddr1-/-;Ldlr-/- mice fed a high fat diet, we identified DDR1 as a novel positive regulator of atherogenesis. Targeted deletion of DDR1 attenuated atherosclerotic plaque development by limiting inflammation and accelerating matrix accumulation and resulted in the formation of macrophage poor, matrix rich lesions.
In the second study, we used bone marrow transplantation to generate chimeric mice with a deficiency of DDR1 in bone marrow derived cells and reveal a central role for macrophage DDR1 in atherogenesis. Deficiency of DDR1 in bone marrow derived cells reduced lesion size by limiting macrophage accumulation in the developing plaque. Moreover using BrdU pulse labeling, we demonstrated reduced monocyte recruitment into the early fatty streak lesions of Ddr1-/-;Ldlr-/- mice.
In our third study, we again utilized bone marrow transplantation to generate mice with deficiency of DDR1 in the host derived tissues such as the vessel wall and uncovered a distinct role for DDR1 expressed on resident vessel wall smooth muscle cells in the regulation of matrix accumulation and fibrous cap formation during atherogenesis. Deficiency of DDR1 in vessel wall cells resulted in robust accumulation of collagen and elastin and resulted in the formation of larger atherosclerotic plaques, with thick fibrous caps.
Taken together, these studies support a critical role for DDR1 in the development of the atherosclerotic plaque. We demonstrate that DDR1 exerts distinct and opposing effects on lesion size by regulating both monocyte recruitment and matrix accumulation. These studies underscore the importance of collagen signaling during atherogenesis, and identify DDR1 as a key transducer; providing signals that regulate both inflammation and fibrosis during atherogenesis.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/17761
Date24 September 2009
CreatorsFranco, Christopher
ContributorsBendeck, Michelle
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds