Return to search

INVESTIGATING THE ROLE OF LEPTIN AND GSK-3 IN THE OSTEOGENIC DIFFERENTIATION OF VASCULAR SMOOTH MUSCLE CELLS / MECHANISM(S) OF VASCULAR CALCIFICATION

Obesity is a major risk factor for insulin resistance, type 2 diabetes, cardiovascular disease (CVD), and vascular calcification. Vascular calcification is correlated with advanced CVD and a significant predictor of cardiovascular events. Obese individuals tend to have increased levels of circulating leptin, an adipocytokine that is a significant independent predictor of cardiovascular disease.
We have shown that daily intraperitoneal injections of exogenous leptin (125 μg/mouse/d) can promote vascular calcification in an ApoE-/- mouse model of atherosclerosis. This increase in calcification is associated with an increase in the expression of several osteoblast-specific markers and is independent of any affect on atherosclerotic lesion size. Our studies suggest that leptin mediates the osteogenic differentiation of vascular smooth muscle cells (VSMCs) to promote vascular calcification via a pathway involving the inhibition of glycogen synthase kinase (GSK)-3 activity.
Other studies have suggested that endoplasmic reticulum (ER) stress-induced GSK-3 activity promotes the development of atherosclerosis. Therefore, we hypothesized that during the progression of vascular disease, GSK-3 functions as a checkpoint for VSMCs at which cells can commit to: i) de-differentiation, thereby contributing to atherosclerosis, or ii) osteogenic differentiation, thereby contributing to vascular calcification. We investigated the effects of modulating GSK-3 activity on the differentiation of VSMCs in vitro. We found that many of the molecular tools that are typically used to modulate ER stress can promote the expression of osteoblast-specific markers and the osteogenic differentiation of MOVAS cells. However, because many of these interventions affect multiple pathways in MOVAS cells, the specific role of the ER stress – GSK-3 pathway is difficult to discern. Future studies are required to determine the effects of direct modulation of GSK-3 on vascular calcification and to delineate the mechanisms/effects of various ER stressors in the osteogenic differentiation of VSMCs. / Thesis / Doctor of Philosophy (Medical Science)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/16509
Date January 2015
CreatorsZeadin, Melec
ContributorsWerstuck, Geoff, Medical Sciences (Thrombosis & Haemostasis & Atherosclerosis)
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds