Return to search

Heart rate variability and respiration signals as late onset sepsis diagnostic tools in neonatal intensive care units / Variabilité du rythme cardiaque et de la respiration comme outils de diagnostic d'apparition tardive de sepsis dans les unités de soins intensifs néonataux

Le sepsis tardif, défini comme une infection systémique chez les nouveaux nés âgés de plus de 3 jours, survient chez environ 7% à 10% de tous les nouveau-nés et chez plus de 25% des nouveau-nés de très faible poids de naissance qui sont hospitalisés dans les unités de soins intensifs néonatals (USIN). Les apnées et bradycardies (AB) spontanées récurrentes et graves sont parmi les principaux indicateurs précoces cliniques de l'infection systémique chez les prématurés. L'objectif de cette thèse est de déterminer si la variabilité du rythme cardiaque (VRC), la respiration et l'analyse de leurs relations aident au diagnostic de l'infection chez les nouveaux nés prématurés par des moyens non invasifs en USIN. Par conséquent, on a effectué l'analyse Mono-Voie (MV) et Bi-Voies (BV) sur deux groupes sélectionnés de nouveau-nés prématurés: sepsis (S) vs. non-sepsis (NS). (1) Tout d'abord, on a étudié la série RR non seulement par des méthodes de distribution (moy, varn, skew, kurt, med, SpAs), par les méthodes linéaire: le domaine temporel (SD, RMSSD) et dans le domaine fréquentiel (p_VLF, p_LF, p_HF), mais aussi par les méthodes non–linéaires: la théorie du chaos (alphas, alphaF) et la théorie de l'information (AppEn, SamEn, PermEn, Regul). Pour chaque méthode, nous étudions trois tailles de fenêtre 1024/2048/4096, puis nous comparons ces méthodes afin de trouver les meilleures façons de distinguer S de NS. Les résultats montrent que les indices alphaS, alphaF et SamEn sont les paramètres optimaux pour séparer les deux populations. (2) Ensuite, la question du couplage fonctionnel entre la VRC et la respiration nasale est adressée. Des relations linéaires et non-linéaires ont été explorées. Les indices linéaires sont la corrélation (r²), l'indice de la fonction de cohérence (Cohere) et la corrélation temps-fréquence (r2t,f) , tandis que le coefficient de régression non-linéaire (h²) a été utilisé pour analyser des relations non-linéaires. Nous avons calculé les deux directions de couplage pendant l'évaluation de l'indice h2 de régression non-linéaire. Enfin, à partir de l'ensemble du processus d'analyse, il est évident que les trois indices (r2tf_rn_raw_0p2_0p4, h2_rn_raw et h2_nr_raw) sont des moyens complémentaires pour le diagnostic du sepsis de façon non-invasive chez ces patients fragiles. (3) Après, l'étude de faisabilité de la détection du sepsis en USIN est réalisée sur la base des paramètres retenus lors des études MV et BV. Nous avons montré que le test proposé, basé sur la fusion optimale des six indices ci-dessus, conduit à de bonnes performances statistiques. En conclusion, les mesures choisies lors de l'analyse des signaux en MV et BV ont une bonne répétabilité et permettent de mettre en place un test en vue du diagnostic non invasif et précoce du sepsis. Le test proposé peut être utilisé pour fournir une alarme fiable lors de la survenue d'un épisode d'AB tout en exploitant les systèmes de monitoring actuels en USIN. / Late-onset sepsis, defined as a systemic infection in neonates older than 3 days, occurs in approximately 10% of all neonates and in more than 25% of very low birth weight infants who are hospitalized in Neonatal Intensive Care Units (NICU). Recurrent and severe spontaneous apneas and bradycardias (AB) is one of the major clinical early indicators of systemic infection in the premature infant. Various hematological and biochemical markers have been evaluated for this indication but they are invasive procedures that cannot be repeated several times. The objective of this Ph.D dissertation was to determine if heart rate variability (HRV), respiration and the analysis of their relationships help to the diagnosis of infection in premature infants via non-invasive ways in NICU. Therefore, we carried out Mono-Channel (MC) and Bi-Channel (BC) Analysis in two selected groups of premature infants: sepsis (S) vs. non-sepsis (NS). (1) Firstly, we studied the RR series not only by distribution methods (moy, varn, skew, kurt, med, SpAs), by linear methods: time domain (SD, RMSSD) and frequency domain (p_VLF, p_LF, p_HF), but also by non-linear methods: chaos theory (alphaS, alphaF) and information theory (AppEn, SamEn, PermEn, Regul). For each method, we attempt three sizes of window 1024/2048/4096, and then compare these methods in order to find the optimal ways to distinguish S from NS. The results show that alphaS, alphaF and SamEn are optimal parameters to recognize sepsis from the diagnosis of late neonatal infection in premature infants with unusual and recurrent AB. (2) The question about the functional coupling of HRV and nasal respiration is addressed. Linear and non-linear relationships have been explored. Linear indexes were correlation (r²), coherence function (Cohere) and time-frequency index (r2t,f), while a non-linear regression coefficient (h²) was used to analyze non-linear relationships. We calculated two directions during evaluate the index h2 of non-linear regression. Finally, from the entire analysis process, it is obvious that the three indexes (r2tf_rn_raw_0p2_0p4, h2_rn_raw and h2_nr_raw) were complementary ways to diagnosticate sepsis in a non-invasive way, in such delicate patients.(3) Furthermore, feasibility study is carried out on the candidate parameters selected from MC and BC respectively. We discovered that the proposed test based on optimal fusion of 6 features shows good performance with the largest Area Under Curves (AUC) and the least Probability of False Alarm (PFA). As a conclusion, we believe that the selected measures from MC and BC signal analysis have a good repeatability and accuracy to test for the diagnosis of sepsis via non-invasive NICU monitoring system, which can reliably confirm or refute the diagnosis of infection at an early stage.

Identiferoai:union.ndltd.org:theses.fr/2013REN1S106
Date19 December 2013
CreatorsWang, Yuan
ContributorsRennes 1, Université européenne de Bretagne, Senhadji, Lotfi, Carrault, Guy
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds