Los seres humanos han desarrollado especialmente su capacidad perceptiva para procesar caras y extraer información de las características faciales. Usando nuestra capacidad conductual para percibir rostros, hacemos atribuciones tales como personalidad, inteligencia o confiabilidad basadas en la apariencia facial que a menudo tienen un fuerte impacto en el comportamiento social en diferentes dominios. Por lo tanto, las caras desempeñan un papel fundamental en nuestras relaciones con otras personas y en nuestras decisiones cotidianas.
Con la popularización de Internet, las personas participan en muchos tipos de interacciones virtuales, desde experiencias sociales, como juegos, citas o comunidades, hasta actividades profesionales, como e-commerce, e-learning, e-therapy o e-health. Estas interacciones virtuales manifiestan la necesidad de caras que representen a las personas reales que interactúan en el mundo digital: así surgió el concepto de avatar. Los avatares se utilizan para representar a los usuarios en diferentes escenarios y ámbitos, desde la vida personal hasta situaciones profesionales. En todos estos casos, la aparición del avatar puede tener un efecto no solo en la opinión y percepción de otra persona, sino en la autopercepción, que influye en la actitud y el comportamiento del sujeto. De hecho, los avatares a menudo se emplean para obtener impresiones o emociones a través de expresiones no verbales, y pueden mejorar las interacciones en línea o incluso son útiles para fines educativos o terapéuticos. Por lo tanto, la posibilidad de generar avatares de aspecto realista que provoquen un determinado conjunto de impresiones sociales supone una herramienta muy interesante y novedosa, útil en un amplio abanico de campos.
Esta tesis propone un método novedoso para generar caras de aspecto realistas con un perfil social asociado que comprende 15 impresiones diferentes. Para este propósito, se completaron varios objetivos parciales.
En primer lugar, las características faciales se extrajeron de una base de datos de caras reales y se agruparon por aspecto de una manera automática y objetiva empleando técnicas de reducción de dimensionalidad y agrupamiento. Esto produjo una taxonomía que permite codificar de manera sistemática y objetiva las caras de acuerdo con los grupos obtenidos previamente. Además, el uso del método propuesto no se limita a las características faciales, y se podría extender su uso para agrupar automáticamente cualquier otro tipo de imágenes por apariencia.
En segundo lugar, se encontraron las relaciones existentes entre las diferentes características faciales y las impresiones sociales. Esto ayuda a saber en qué medida una determinada característica facial influye en la percepción de una determinada impresión social, lo que permite centrarse en la característica o características más importantes al diseñar rostros con una percepción social deseada.
En tercer lugar, se implementó un método de edición de imágenes para generar una cara totalmente nueva y realista a partir de una definición de rostro utilizando la taxonomía de rasgos faciales antes mencionada.
Finalmente, se desarrolló un sistema para generar caras realistas con un perfil de rasgo social asociado, lo cual cumple el objetivo principal de la presente tesis.
La principal novedad de este trabajo reside en la capacidad de trabajar con varias dimensiones de rasgos a la vez en caras realistas. Por lo tanto, en contraste con los trabajos anteriores que usan imágenes con ruido, o caras de dibujos animados o sintéticas, el sistema desarrollado en esta tesis permite generar caras de aspecto realista eligiendo los niveles deseados de quince impresiones: Miedo, Enfado, Atractivo, Cara de niño, Disgustado, Dominante, Femenino, Feliz, Masculino, Prototípico, Triste, Sorprendido, Amenazante, Confiable e Inusual.
Los prometedores resultados obtenidos permitirán investigar más a fondo cómo modelar l / Humans have specially developed their perceptual capacity to process faces and to extract information from facial features. Using our behavioral capacity to perceive faces, we make attributions such as personality, intelligence or trustworthiness based on facial appearance that often have a strong impact on social behavior in different domains. Therefore, faces play a central role in our relationships with other people and in our everyday decisions.
With the popularization of the Internet, people participate in many kinds of virtual interactions, from social experiences, such as games, dating or communities, to professional activities, such as e-commerce, e-learning, e-therapy or e-health. These virtual interactions manifest the need for faces that represent the actual people interacting in the digital world: thus the concept of avatar emerged. Avatars are used to represent users in different scenarios and scopes, from personal life to professional situations. In all these cases, the appearance of the avatar may have an effect not only on other person's opinion and perception but on self-perception, influencing the subject's own attitude and behavior. In fact, avatars are often employed to elicit impressions or emotions through non-verbal expressions, and are able to improve online interactions or even useful for education purposes or therapy. Then, being able to generate realistic looking avatars which elicit a certain set of desired social impressions poses a very interesting and novel tool, useful in a wide range of fields.
This thesis proposes a novel method for generating realistic looking faces with an associated social profile comprising 15 different impressions. For this purpose, several partial objectives were accomplished.
First, facial features were extracted from a database of real faces and grouped by appearance in an automatic and objective manner employing dimensionality reduction and clustering techniques. This yielded a taxonomy which allows to systematically and objectively codify faces according to the previously obtained clusters. Furthermore, the use of the proposed method is not restricted to facial features, and it should be possible to extend its use to automatically group any other kind of images by appearance.
Second, the existing relationships among the different facial features and the social impressions were found. This helps to know how much a certain facial feature influences the perception of a given social impression, allowing to focus on the most important feature or features when designing faces with a sought social perception.
Third, an image editing method was implemented to generate a completely new, realistic face from just a face definition using the aforementioned facial feature taxonomy.
Finally, a system to generate realistic faces with an associated social trait profile was developed, which fulfills the main objective of the present thesis.
The main novelty of this work resides in the ability to work with several trait dimensions at a time on realistic faces. Thus, in contrast with the previous works that use noisy images, or cartoon-like or synthetic faces, the system developed in this thesis allows to generate realistic looking faces choosing the desired levels of fifteen impressions, namely Afraid, Angry, Attractive, Babyface, Disgusted, Dominant, Feminine, Happy, Masculine, Prototypical, Sad, Surprised, Threatening, Trustworthy and Unusual.
The promising results obtained in this thesis will allow to further investigate how to model social perception in faces using a completely new approach. / Els sers humans han desenvolupat especialment la seua capacitat perceptiva per a processar cares i extraure informació de les característiques facials. Usant la nostra capacitat conductual per a percebre rostres, fem atribucions com ara personalitat, intel·ligència o confiabilitat basades en l'aparença facial que sovint tenen un fort impacte en el comportament social en diferents dominis. Per tant, les cares exercixen un paper fonamental en les nostres relacions amb altres persones i en les nostres decisions quotidianes.
Amb la popularització d'Internet, les persones participen en molts tipus d'inter- accions virtuals, des d'experiències socials, com a jocs, cites o comunitats, fins a activitats professionals, com e-commerce, e-learning, e-therapy o e-health. Estes interaccions virtuals manifesten la necessitat de cares que representen a les persones reals que interactuen en el món digital: així va sorgir el concepte d'avatar. Els avatars s'utilitzen per a representar als usuaris en diferents escenaris i àmbits, des de la vida personal fins a situacions professionals. En tots estos casos, l'aparició de l'avatar pot tindre un efecte no sols en l'opinió i percepció d'una altra persona, sinó en l'autopercepció, que influïx en l'actitud i el comportament del subjecte. De fet, els avatars sovint s'empren per a obtindre impressions o emocions a través d'expressions no verbals, i poden millorar les interaccions en línia o inclús són útils per a fins educatius o terapèutics. Per tant, la possibilitat de generar avatars d'aspecte realista que provoquen un determinat conjunt d'impressions socials planteja una ferramenta molt interessant i nova, útil en un ampla varietat de camps.
Esta tesi proposa un mètode nou per a generar cares d'aspecte realistes amb un perfil social associat que comprén 15 impressions diferents. Per a este propòsit, es van completar diversos objectius parcials.
En primer lloc, les característiques facials es van extraure d'una base de dades de cares reals i es van agrupar per aspecte d'una manera automàtica i objectiva emprant tècniques de reducció de dimensionalidad i agrupament. Açò va produir una taxonomia que permet codificar de manera sistemàtica i objectiva les cares d'acord amb els grups obtinguts prèviament. A més, l'ús del mètode proposat no es limita a les característiques facials, i es podria estendre el seu ús per a agrupar automàticament qualsevol altre tipus d'imatges per aparença.
En segon lloc, es van trobar les relacions existents entre les diferents característiques facials i les impressions socials. Açò ajuda a saber en quina mesura una determinada característica facial influïx en la percepció d'una determinada impressió social, la qual cosa permet centrar-se en la característica o característiques més importants al dissenyar rostres amb una percepció social desitjada.
En tercer lloc, es va implementar un mètode d'edició d'imatges per a generar una cara totalment nova i realista a partir d'una definició de rostre utilitzant la taxonomia de trets facials abans mencionada.
Finalment, es va desenrotllar un sistema per a generar cares realistes amb un perfil de tret social associat, la qual cosa complix l'objectiu principal de la present tesi.
La principal novetat d'este treball residix en la capacitat de treballar amb diverses dimensions de trets al mateix temps en cares realistes. Per tant, en contrast amb els treballs anteriors que usen imatges amb soroll, o cares de dibuixos animats o sintètiques, el sistema desenrotllat en esta tesi permet generar cares d'aspecte realista triant els nivells desitjats de quinze impressions: Por, Enuig, Atractiu, Cara de xiquet, Disgustat, Dominant, Femení, Feliç, Masculí, Prototípic, Trist, Sorprés, Amenaçador, Confiable i Inusual.
Els prometedors resultats obtinguts en esta tesi permetran investigar més a fons com modelar la percepció social en les cares utilitzant un enfocament complet / Fuentes Hurtado, FJ. (2018). A system for modeling social traits in realistic faces with artificial intelligence [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/101943
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/101943 |
Date | 14 May 2018 |
Creators | Fuentes Hurtado, Félix José |
Contributors | Diego Más, José Antonio, Naranjo Ornedo, Valeriana, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.0037 seconds