Return to search

Electrical Properties, Tunability and Applications of Superconducting Metal-Mixed Polymers

We investigate the newly discovered, superconducting metal-mixed polymers made by embedding a surface layer of metal (a tin-antimony alloy) into a plastic substrate (polyetheretherketone - PEEK). Focusing initially on pre-implanted systems, we show that while the substrate morphology does affect the distribution of metal deposited on the surface, the morphology has no affect on the film's electrical properties. We find that the metal content can be characterised via the film's optical absorption, which along with the conductivity, scales with thickness. By conducting low temperature resistivity measurements we observe that the superconducting critical temperature, $T_c$, remains at that of bulk Sn but the transition broadens with decreasing film thickness. Studying N-implanted metal-mixed polymers, we find that the implant temperature can influence the electrical properties of these systems, as higher implant temperatures result in greater disorder, which in turn causes higher residual resistances and broader superconducting transitions. We observe peaks in the magnetoresistance of superconducting/insulating systems, which we attribute to the competition between superconductivity and weak localisation in a granular network. We determine that the substrate morphology does not influence the electrical properties of implanted systems. We investigate the role sputtering plays by implanting heavier ions (Sn) and show that this technique can be used to overcome the issue of inhomogeneity inherent with using thinner initial films. We study the effect the fabrication parameters of implant dose, beam energy and film thickness have on Sn-implanted metal-mixed polymers and find that with only minor changes in the fabrication conditions, it is possible to tune the conductivities of these materials between a zero-resistance superconducting state, through a metal-insulator transition, to a severely insulating state ($R_s > 10^{10}~\Omega/\Box$). We find that the electrical properties can be further controlled by annealing the samples, and that it is possible to induce optical changes at temperatures approaching the glass transition temperature of PEEK. We demonstrate that metal-mixed polymers are suitable for use in resistance-based temperature sensors by comparing their performance directly against commercially available products and find that the metal-mixed polymers perform at least as well as the commercial models and, indeed, pass the highest industry standards.

Identiferoai:union.ndltd.org:ADTP/286556
CreatorsAndrew Stephenson
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.002 seconds