Return to search

Investigations into the Form and Design of an Elbow Exoskeleton Using Additive Manufacturing

The commercial exoskeletons are often heavy and bulky, thus reducing the weight and simplifying the form factor becomes a critical task. This thesis details the process of designing and making a low-profile, cable-driven arm exoskeleton. Many advanced methods are explored: 3D scanning, generative design, soft material, compliant joint, additive manufacturing, and 3D latticing. The experiments on TPU kerf cut found that the stress-strain curve of the sample can be modified by changing the cut pattern, it is even possible to control the linear region. The TPU TPMS test showed that given the same volume, changing the lattice parameters can result in different bending stress-strain curves. This thesis also provides many prototypes, test data, and samples for future reference. / Master of Science / Wearing an exoskeleton should be easy and stress-free, but many of the available models are not ergonomic nor user-friendly. To make an exoskeleton that is inviting and comfortable to wear, various nontraditional methods are used. The arm exoskeleton prototype has a lightweight and ergonomic frame, the joints are soft and compact, the cable-driven system is safe and low-profile. This design also brings aesthetics to the exoskeleton which closes the gap between engineering and design.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/103204
Date05 May 2021
CreatorsXu, Shang
ContributorsMechanical Engineering, Leonessa, Alexander, Hauptman, Jonas, Asbeck, Alan T.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0014 seconds