Sensores virtuais empregando modelos de inferência da composição(responsável pela qualidade) dos produtos de uma coluna de destilação correspondem a medidores implementados em software, capazes de estimar, em tempo real, a composição dos produtos da mesma, a partir de informações do tipo temperaturas e pressões em diversos pontos da coluna e vazões de entrada, de saída e de reciclo. O objetivo deste trabalho é obter esse tipo de sensor para uma coluna de destilação, capaz de estimar instantaneamente a composição dos produtos no topo de uma coluna de destilação multicomponente com condensador parcial, empregando redes neurais artificiais. Foi desenvolvido um simulador dinâmico baseado em modelo não-linear da coluna para aquisição de dados. Neste projeto foi incluído um estudo sobre a influência do treinamento parcial no desempenho do sensor virtual. A idéia é estudar o desempenho para o caso de um sensor virtual treinado de antemão, com dados coletados a partir de um simulador da coluna. Este procedimento disponibiliza um sensor operacional, treinado através de um conjunto de dados simulados ou através de um pequeno conjunto de pontos e retreinado, quando dados reais ou um conjunto maior de dados estiver disponível. Outra contribuição importante é o estudo realizado sobre os principais erros que podem ocorrer neste tipo de sensores, que são raramente tratados em publicações científicas. É também proposta uma metodologia para detecção e correção destes erros que foram encontrados e que afetam o comportamento do sensor, alterando sua precisão e capacidade de ser utilizado em um controle inferencial da planta. / Soft sensors for composition inference models (that are responsible for the quality) of distillation column products, correspond to virtual instruments implemented in software. This software is able to estimate, in real time, the composition of the output products of the column, based on information such as temperature and pressure on several points of the column and on input, output and recycle flow. The purpose of this work is to obtain a soft sensor that estimates the instantaneous composition of the product at the top of a multicomponent distillation column with a partial condenser, employing artificial neural networks. The chosen architecture was the feedforward neural network with three layers. It was chosen based on many tested options. It was developed a dynamical simulator of this column for data acquisition based on a non-linear model. In this study, it was included an investigation about the influence of partial training in the performance of the soft sensor. The goal is to study the results achieved in the case of a soft sensor trained beforehand, with data acquired from the simulator of this column. This procedure makes possible to have an operational soft sensor, trained based on a simulated data set or on a small amount of points and then retrained when a real or larger data set is available. Another important contribution is the study performed about the main errors that may appear in this kind of sensor. These errors are rarely mentioned in scientific papers. It also aims at implementing techniques to enable detection and correction of those errors that the soft sensor may present, and that affect the performance of the soft sensor, changing its precision and making it inadequate for inferential control.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-21022006-163655 |
Date | 13 December 2005 |
Creators | Zanata, Diogo Rafael Prado |
Contributors | Garcia, Claudio |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0025 seconds