Return to search

Soft Lithographic Fabrication of Micro Optics and Integrated Photonic Components

Optical waveguides, quantum dot emitters, and flat top beam shapers were designed and fabricated by two soft lithographic techniques; micro transfer molding (microTM) and vacuum assisted microfluidics (VAM). Optical waveguides were fabricated through a microTM technique that utilizes a poly dimethylsiloxane (PDMS) stamp. Generation of the flexible stamp required development of a channel waveguide pattern mask, defined by maskless lithography, and followed by construction of a three dimensional channel waveguide master, acquired through contact lithography on a glass substrate coated with SU-8 photoresist. Creation of a positive imprint replicating mold was accomplished through prepolymer PDMS solution settling and curing around the master. Waveguide fabrication was achieved through PDMS conformal contact on, and subsequent curing of, ultraviolet (UV) polymer resins on a silicon substrate. A slight modification of the microTM PDMS stamp, whereby inlet and outlet tunnels were incorporated, resulted in a novel VAM structure and correspondingly waveguides. Waveguide propagation losses were determined to be 1.14 dB/cm and 0.68 dB/cm for the microTM and VAM fabricated waveguides, respectively. A lithographic approach employing quantum dots doped in SU-8 photoresist has led to the realization of a new quantum dot emitter. Uniform coating of a doped material on a silver coated substrate was followed by contact mask lithography. Evaporation of a thin silver layer, upon development of the resultant quantum dot doped channel waveguide structure, facilitates confined emission. Successful edge emitting was demonstrated with blue laser pumping. The lithographic fabrication of such quantum dot emitter is successfully replaced by soft lithographic VAM technique. A flat top beam shaper, whose profile was developed on cured UV polymer resins, was fabricated by microTM technique. The master used for the development of the PDMS stamp was produced through an iterative wet etching process capable of achieving etching depths as small as a few nanometers. Comparisons between the reference wet etched beam shaper and the microTM based beam shaper produced near identical output flat top beams from incident Gaussian beams. Through this research work, successful soft lithographic fabrication of optical waveguides, quantum dot emitters, and flat top beam shapers were demonstrated. The vast potential exhibited by these and other related technologies show great promise for cost-effective mass production of various micro optics and integrated photonic components.

Identiferoai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_theses-1178
Date01 January 2008
CreatorsBaig, Sarfaraz Niaz Ali
PublisherScholarly Repository
Source SetsUniversity of Miami
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceOpen Access Theses

Page generated in 0.0014 seconds