Several farming systems, in a region of the Dark Brown soil zone west of Saskatoon, were investigated to identify farming practices that are soil-conserving, or soil-degrading, by measuring their effects on soil quality. The study identified soil properties that are practical and measurable indicators of soil quality, and factors that influence farmers adoption of soil-conserving farming practices. On coarse-loamy to sandy-textured, glaciolacustrine soils, farming systems with long rotations and adequate fertilizer inputs or permanent cover, were associated with a higher quality of soils than tillage-intensive crop-fallow systems. Better soil quality was attributed to the larger addition of crop residues, enabling long-rotation soils to maintain a relatively large pool of mineralizable C, N, and P, and a large microbial biomass. The larger microbial biomass was an indicator of the improved quality of continuously cropped soils as a habitat for microorganisms, and their increased ability to cycle nutrients and C. Other indicators of improved soil quality were increased soil thickness, organic C content, infiltration rate, and aggregation, and decreased bulk density and salinity. Slightly lower A horizon pH was the only negative indicator of quality associated with the continuously cropped soils. The ability of farmers to adapt the longer-rotation systems was constrained by capital and labour limitations, management skills or lifestyle choices. Farmers with limited capital were less willing to invest in the inputs required to continuously crop, because they perceived an increase in the risk of crop failure in that system. Farmers with a large land base, or with off-farm employment, may not have the time or labour to seed and harvest all of their land every year. Among the study farms, the farmers who were best able to adopt continuous cropping systems were those involved in multifamily, mixed farms. There were less labour and capital limitation to continuous cropping on multifamily farms. On mixed farms, where income was derived from both livestock and grains, the risk of reduced grain yield was less serious. Appropriate use of low quality, erodible soils was often an important consideration of farmers who raised cattle.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-10202004-235743 |
Date | 01 January 1996 |
Creators | Boehm, Marie Margaret |
Contributors | Anderson, Darwin W. |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-10202004-235743 |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0026 seconds