There is a growing need to develop rapid and cost-effective ecotoxicological tools for risk assessment because traditional methods examine endpoints such as mortality, which do not provide any insight into the mode of action (MOA) of the chemical. Research presented within this thesis illustrates the potential of 1H NMR-based metabolomics as a rapid and routine ecotoxicological tool that can elucidate a chemical’s MOA and also aid in the identification of metabolites of exposure. Metabolomics involves measuring the fluctuations in the endogenous metabolites of an organism within a cell, tissue, bio-fluid or whole organism in response to an external stressor. We focused on the model polycyclic aromatic hydrocarbon (PAH) phenanthrene, and the perfluoroalkyl acids (PFAAs) perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), due to their recalcitrant nature and widespread prevalence in soil environments. 1H NMR-based metabolomics analysis of the exposure of Eisenia fetida earthworms to sub-lethal phenanthrene exposure via filter paper contact tests revealed a concentration-dependent two-phased MOA: a linear correlation between the metabolic response and exposure concentration at low concentrations followed by a plateau in the responses at high concentrations. Alanine, glutamate, maltose, cholesterol and phosphatidylcholine emerged as potential indicators of phenanthrene exposure. An increased energy demand and an interruption in the conversion of succinate to fumarate in the Krebs cycle were observed due to phenanthrene exposure. Sub-lethal PFOA and PFOS exposure to E. fetida via contact tests for two days revealed heightened responses with higher PFOA and PFOS concentrations. Leucine, arginine, glutamate, maltose, and ATP were identified as potential indicators of PFOA or PFOS exposure. E. fetida responses were then investigated after exposure for two, seven and fourteen days to an artificial soil that was spiked with sub-lethal PFOS concentrations. An exposure time-dependent operation of two separate MOAs were identified. Both the contact tests and artificial soil exposure studies identified an elevation in fatty acid oxidation, a disruption in energy metabolism and biological membrane structure, and also an interruption of ATP synthesis following PFOA and PFOS exposure. This thesis illustrates the promise of NMR-based metabolomics as a routine tool for ecotoxicological assessment of contaminated sites.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/35873 |
Date | 08 August 2013 |
Creators | Lankadurai, Brian |
Contributors | Simpson, Myrna J. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds