Conventional farming practices and land-use conversions drive carbon out of soil and into the atmosphere, where it contributes to climate change. Biochar, a soil amendment produced by pyrolyzing organic feedstocks under low-oxygen conditions, is a promising tool to restore soil carbon and draw down atmospheric carbon dioxide. Biochar has received considerable attention from scientists, growers, and environmentalists in the last 20 years, but there is still a gap between academic research and practical recommendations on biochar production and application that are relevant to small-scale growers. Here I present the results from two complementary studies that demonstrate the utility of local-scale biochar systems and provide some recommendations for those looking to work with biochar. The first study sought to determine the impact of biochar amendments on soil carbon and nutrient retention on three working farms across a variety of soil types, cropping systems, and climates in the United States. The effect of biochar amendment depended on initial soil characteristics and the properties of the biochar applied. Biochar amendments increased soil carbon in all three sites and increased soil nitrogen at two of the three. In this study pyrolysis conditions appeared to be as important as local soils and climate influences on the efficacy of biochar treatments. The second study was a life cycle assessment using SimaPro software to quantify the carbon balance and global warming potential of biochar produced from three local feedstocks (softwood, hardwood, and hay) applied to pasture soils in Southwest Virginia. Feedstock type, pyrolysis gas yield, and transportation distance significantly contributed to variation in the carbon balance of each agro-ecosystem. Biochar made from softwood lumber scraps performed best, with the highest net carbon storage and lowest global warming potential, followed by biochar made from hardwood scraps. Hay biochar performed worst, with positive carbon emissions (i.e., more carbon released than stored over its life cycle) in most scenarios tested, mainly because of its low biochar yield and the carbon emissions associated with agronomic production and transportation. Together these studies demonstrate the potential of local biochar systems to improve both soil health and carbon sequestration, and reinforce how important it is to know the characteristics of the soil and the production history and properties of the biochar being applied in order to meet soil health and carbon sequestration goals. / Master of Science / Conventional farming practices break down organic material in the soil, which decreases the capacity of soils to sustain crop growth and contributes to climate change as the soil releases carbon dioxide and other greenhouse gasses into the atmosphere. Biochar, or charcoal that is deliberately incorporated into soil, is gaining popularity among farmers, gardeners, and climate scientists for its ability to improve soil health and draw carbon out of the atmosphere to create stable long-term pools of carbon underground. Unfortunately, much of the research on biochar does not translate easily into recommendations for growers and land-managers to make and use biochar. Here I discuss the results from two studies examining the effect of biochar on soil health and carbon sequestration on local scales. In the first experiment I analyzed soil samples shared by farmers in New Mexico, Minnesota and Virginia who applied locally-sourced biochar to their soils. I found that the initial characteristics of the soil and of the biochar affected how the biochar application changed agriculturally-relevant soil properties. In general, biochar improved soil carbon and nitrogen levels, had mixed effects on soil pH depending on the biochar's pH, and had no effect on electrical conductivity (a measure of soil salinity). The second study was a life cycle assessment that quantified and compared greenhouse gas emissions of three different types of biochar, from feedstock harvest to biochar application to soil. I found that the type of feedstock used to make biochar, the amount of gas emitted during the conversion process, and the distance the feedstocks and biochar were transported all played a role in the overall carbon balance of the life cycle. The biochar made from softwood scraps performed best from a carbon storage perspective, followed by biochar made from hardwood. These two biochars tended to return more carbon to the soil than they emitted over their life cycle. The biochar made from hay performed worst, and emitted more carbon than it stored in most of the scenarios I tested. Together these studies show the potential of local biochar systems to improve both soil health and carbon sequestration and reinforce how important it is to be familiar with the soil and the production history and properties of the biochar being applied in order to meet soil health and carbon sequestration goals.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/111835 |
Date | 14 September 2022 |
Creators | Drew, Sophia Eliza |
Contributors | Biological Sciences, Barrett, John E., Whitehead, Susan R., Groot, Harry W., Strahm, Brian D. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0025 seconds