The original aims of this project were to investigate the potential for phytoremediation,
with emphasis on metal accumulation, of three contrasting industrial processing wastes.
These were tailings material (PT) from the decommissioned Pering Pb/Zn Mine (Reivilo,
North West Province, South Africa (SA)), smelter slag (SS) from the Samancor Mnsmelter
(Meyerton, Gauteng, SA) and electro-winning waste (EW) from MMC (Nelspruit,
Mpumalanga, SA). It became evident, however, early in the project, that the use of metal
hyperaccumulating plants was not a viable technology for these wastes. The project
objectives were thus adapted to investigate alternative remedial technologies. The use of
endemic and adapted grass species was investigated to revegetate the PT. In addition,
chemically-enhanced phytoremediation was investigated to induce metal
hyperaccumulation by grasses grown in the PT (Part 1). Revegetation of the SS and EW
were not considered feasible, thus land disposal of these two Mn-rich processing wastes
was investigated (Part 2).
Part 1 - Revegetation of tailings from Pering Mine
The PT was found to be alkaline (pH > 8.0), and consisted mainly of finely crushed
dolomite. It was generally nutrient poor with high amounts of readily extractable Zn. It
also had a very high P-sorption capacity. Seven grass species (Andropogon eucomus Nees;
Cenchrus ciliaris L.; Cymbopogon plurinodis Stapf ex Burtt Davy; Digitaria eriantha
Steud; Eragrostis superba Peyr; Eragrostis tef (Zucc.) Trotter and Fingeruthia africana
Lehm) were grown in PT treated with different rates of inorganic fertiliser under
glasshouse conditions. The fertiliser was applied at rates equivalent to 100 kg N, 150 kg P
and 100 kg K ha-1 (full), half the full rate (half) and no fertiliser (0). Seed of C. ciliaris, C.
plurinodis, D. eriantha, E. superba and F. africana were collected from Pering Mine. Seed
of A. eucomus was collected from the tailings dam of an abandoned chrysotile asbestos
mine. These were germinated in seedling trays and replanted into the pots. A commercial
variety of E. tef was tested, but due to poor survival this species was subsequently
excluded. The foliage and root biomass of the grasses and concentrations of Ca, Cu, Fe, K,
Mg, Mn, Pb and Zn in the foliage were determined. The yield of all the grasses increased with an increase in fertiliser rate, with a significant
species by fertiliser interaction (p = 0.002). The highest yield was measured for C ciliaris,
followed by D. eriantha (4.02 and 3.43 g porI, respectively), at the full fertiliser
application rate. Cymbopogon plurinodis was the third highest yielding species, while the
yields of E. superba and F. africana were similar. There were positive linear correlations
between foliage yield and fertiliser application rate for all grasses. The root biomass of the
grasses also increased with an increase in fertiliser application rate. The interaction
between grass species and fertiliser level had a non-significant (p = 0.085) effect on the
yield of grasses, though there were significant individual effects of species (p < 0.001) and
fertiliser (p < 0.001). Digitaria eriantha had the highest root biomass at each fertiliser
application rate, followed by C plurinodis and C ciliaris. Similarly to foliage yield, there
were positive linear correlations between root biomass and fertiliser application level.
Positive, linear correlations were found between foliage yield and root biomass, though the
strength of these varied. The weakest correlation was found for D. eriantha (R2 = 0.42) but
this was attributed to a moderately high variance in foliage yield and roots becoming potbound.
Generally, nutrient concentrations were within adequacy ranges reported in the
literature, except for P concentrations. This was attributed to the high P-sorption capacity
of the PT. Zinc concentrations were higher than the recommended range for grasses, and
also increased with an increase in fertiliser application rate. This was attributed to the high
available Zn concentrations in the PT and improved growth of the grasses at higher
fertiliser application rates. It was recommended that C ciliaris and D. eriantha be used for
revegetation due to high biomass production and that E. superba be used because of rapid
growth rate and high self-propagation potential. Both C plurinodis and F. africana can
also be used but are slower to establish, while A. eucomus was not a suitable species for
revegetation of the PT. Inorganic fertiliser improved the growth of all these species and is
recommended for the initial establishment of the grasses.
An experiment was conducted to investigate the potential of inducing metal
hyperaccumulation in three grass species (C ciliaris, D. eriantha and E. superba) grown in
the PT. Grasses were grown in fertilised tailings for six weeks, then either
ethylenediaminetetraacetic acid (EDTA) or diethylentriaminepentaacetic acid (DTPA) was
added to the pots at rates of 0, 0.25, 0.5, 1 and 2 g kg-I. Grasses were allowed to grow for
an additional week before harvesting. The concentrations of Cu, Pb and Zn were
determined in the foliage. The interactive effect of species and chelating agent on the uptake of Cu was marginally significant (p = 0.042) and non-significant for Pb and Zn (p =
0.14 and 0.73, respectively). While the addition of the chelating agents resulted in an
increase in Pb uptake by the grasses, it did not induce metal hyperaccumulation in the
grasses. This was attributed to the ineffectiveness of the chelating agents in the PT in the
presence of competing base cations (mainly Ca). The use of this technology was not
recommended.
Part 2 - Land disposal of Mn-rich processing wastes
Chemical characterisation of the SS showed that it was an alkaline (pH > 9.5), Mn-rich
silicate (glaucochroite), that generally·had low amounts of soluble and readily extractable
metals. Acidic extractants removed high amounts of Mn, Ca and Mg, attributed to the
dissolution of the silicate mineral. The EW was highly saline (saturated paste EC = 6 780
mS m,l) with a near-neutral pH. It had high amounts of soluble Mu, NHt+, S, Mg, Ca and
Co. The primary minerals were magnetite, jacobsite (MnFe204) and gypsum.
The effect of SS and EW on selected chemical properties of six soils was investigated by
means of an incubation experiment, and their effect on the yield and element uptake by
ryegrass was investigated in selected soils under glasshouse conditions. Five A-horizons
(Bonheim (Ba), Hutton (Hu), lnanda (la), Shortlands (Sd) and Valsrivier (Va» and an Ehorizon
(Longlands (Lo» were treated with SS at rates of 30, 60, 120,240 and 480 g kg'l
and EW at rates of20, 40,80,160 and 320 g kg'l. Soils were incubated at field capacity at
24 QC and sampled periodically over 252 days. The soil pH, both immediately and over
time, increased, while exchangeable acidity decreased after the addition of SS to the soils.
The pH at the high rates of SS tended to be very high (about 8). The electrical conductivity
(EC) of the soils also increased with an increase in SS application rates and over time. The
most marked changes tended to occur in the more acidic soils (e.g. la). In the soils treated
with EW, there was generally an increase in the pH of the acid soils (e.g. la) while in the
more alkaline soils the pH tended to decrease (e.g. Va), immediately after waste
application. There was a general decrease in pH over time, with a concurrent increase in
exchangeable acidity, due to nitrification processes. The EC of all the soils increased
sharply with an increase in EW application rate, attributed to the very saline nature of the
EW. Water-soluble Mn concentrations in the soils treated with SS tended to be below
measurable limits, except in the acid la. Iron concentrations decreased with an increase in
SS application rate and over time for all soils. The water-soluble concentrations of Mn, Ca,
Mg and S increased sharply with an increase in EW application rate in all soils. There was
also a general increase in Mn concentrations over time. Iron concentrations tended to be
low in the EW-treated soils, while Co concentrations increased as EW application rate
increased.
Exchangeable (EX, 0.05 M CaCh-extractable) concentrations of Fe, Co, Cu, Zn and Ni
were low in the SS-treated soils. The concentrations of EX-Mn tended to increase with an
increase in SS application rate in the la soil, but generally decreased in the other soils.
There was also a decrease over time, attributed to the high pH leading to immobilisation of
Mn. The EX-metal concentrations of the EW-treated soils were generally low, except for
Mn. The concentrations of EX-Mn increased sharply as EW application rate increased. The
contribution of EX-Mn was calculated to range from 209 to 3 340 mg Mn for EW rates of
20 to 320 g kg-I, respectively. In the Lo soil the expected amount of Mn was extracted at
the different EW application rates. In the other soils the EX-Mn concentrations were
typically higher than expected. This was attributed primarily to the dissolution ofMn from
the EW due to the interaction between soil organic matter and the EW. There was
generally an increase in EX-Mn concentrations over time, attributed to the decrease in pH
of the soils treated with EW.
The above-ground biomass production of ryegrass grown in Lo and Hu soils treated with
SS increased at low application rates, but decreased again at the highest rates. The
reduction in yield was attributed to an increase in soil pH leading to trace nutrient
deficiencies. At the lower SS application rates, nutrient concentrations of the ryegrass
tended to be within typical adequate ranges reported in the literature. Of concern was the
elevated Mn concentration in the ryegrass foliage, though no toxicity symptoms were seen.
This was attributed to the dissolution of the silicate mineral due to soil acidification
processes and the possible ameliorating effect of high Ca and Si concentrations on Mn
toxicity.
The growth of ryegrass was generally poor in the Hu soil treated with EW and it did not
survive beyond germination in the Lo soil treated with EW. In the Hu soil plants grew well in the 20 and 40 g kg-I EW treatments, but died at the higher rates. In both cases mortality
was thought to be due to the high salinity that resulted in toxicity and osmotic stress in the
newly germinated seedlings. The improved growth at the lower rates ofEW, in the Hu soil,
was attributed mainly to increased N availability. The concentrations of Mn in the foliage
were elevated in the soils treated with EW.
A pot experiment was conducted to test the effect of applying either humic acid (HA) or
compost (at a rate of 20 g kg-I) with lime (at rates of 0, 5 and 10 Mg ha-I) on the growth
and nutrient uptake of ryegrass grown in the Hu soil treated with EW at rates of 0, 10, 20
and 40 g kg-I. A basal P-fertiliser was also applied in this experiment. The highest yields
were measured in the treatments receiving either HA or compost at the highest application
rate ofEW. The addition oflime did not improve the yield of the HA treatments, but did in
the compost treatments. Generally, nutrient concentrations were adequate. The Mn
concentrations were markedly lower than expected, and this was attributed to the formation
of insoluble Mn-P compounds due to the addition of fertiliser. The effect of either HA or
compost on Mn concentrations was not marked, but lime reduced Mn uptake. A leaching
column experiment showed that, generally, the Mn was not readily leached through a
simulated soil profile, though the addition of compost may enhance mobility. There was
also evidence to indicate an increase in salinity and that Co concentrations of the leachate
may be a problem.
These data suggest that soil organic matter may be a very important factor in determining
the release of Mn from the wastes, notably the EW. The land disposal of the SS and EW
was not recommended at the rates investigated here, as both showed the potential for Mn
accumulation in above-ground foliage, even at low application rates, while high
application rates negatively impacted on plant growth. It appears that P-compounds may be
beneficial in reducing Mn availability in the EW, but further testing is required. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ukzn/oai:http://researchspace.ukzn.ac.za:10413/3512 |
Date | January 2007 |
Creators | Titshall, Louis William. |
Contributors | Hughes, Jeffrey C. |
Source Sets | South African National ETD Portal |
Detected Language | English |
Page generated in 0.0028 seconds