Return to search

The influence of soil organic matter components on the aggregation and structural stability of a lacustrine silty clay /

Under intensive farming, soil structure degradation and soil erosion are primarily associated with losses of organic matter. Restoration of soil structure may depend on the amount and nature of the organic amendment added. The effect of the addition of humic and fibric materials, and beeswax, a naturally occurring source of long-chain aliphatics comparable to those present in humic materials, on microbial activity and the structural properties of a waterlogged silty clay low in organic carbon was investigated. The incorporation of the fibric material increased the microbial activity in proportion to the amount of material added, whereas the humic and beeswax materials had the opposite effect. All organic materials added increased the cohesion of aggregates due to non water-dispersible cements. The fibric material was predominantly composed of polysaccharides and large quantities were required to produce a positive effect. The humic material was mainly lipids and the effect was associated with the time of incubation rather than the amount of material added. Principal-component analysis showed that the humic material was more effective at stabilizing soil aggregates than the fibric material, although the fibric material had a greater effect on the resistance of aggregates to slaking forces. Further testing with beeswax showed that the clay-associated lipids increased by 3.5-4.0 times the resistance of soil aggregates to the slaking forces, whereas the effect of hydrophobic "free" lipids was transient and accessory by coating and embedding soil aggregates.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.74306
Date January 1989
CreatorsDinel, H. (Henri), 1950-
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Renewable Resources.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001069673, proquestno: AAINN63566, Theses scanned by UMI/ProQuest.

Page generated in 0.0018 seconds