Return to search

Soil Modulation of Ecosystem Response to Climate Forcing and Change Across the US Desert Southwest

The dryland ecosystems of the US Desert Southwest (SW) are dependent on soil moisture for aboveground productivity; the generation of soil moisture in the SW is dependent on both soil physical properties and climate forcing. This study is one of the first regional point-scale analyses that explores the role of soil physical properties in modulating aboveground vegetation dynamics in response to climate forcing in the SW. Soil texture accounted for significant differences in average aboveground primary productivity across the SW. However, soil texture could not account for differences in inter-annual aboveground productivity variation across the SW. Subsurface soil texture was tightly coupled with precipitation seasonality in accounting for differences in long-term average seasonal aboveground productivity in the Mojave and Sonoran Deserts. The results of this study indicate that the subsurface is a significant factor in modulating aboveground primary productivity, and needs to be included in future modeling exercises of dryland ecosystem response to climate forcing and change.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/323416
Date January 2014
CreatorsShepard, Christopher
ContributorsRasmussen, Craig, Crimmins, Michael, Schaap, Marcel
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Thesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0019 seconds