Cette thèse étudie l'origine et le fonctionnement du magnétisme et des processus dynamiques dans les étoiles de type solaire en se basant sur un travail théorique et sur des simulations numériques multidimensionelles. À partir de simulations à la fois 2D (code STELEM) et 3D (code ASH) nous étendons aux autres étoiles de types spectral G & K les travaux récents effectués sur le Soleil. Grâce à cette double approche nous sommes capables de mettre en évidence les mécanismes et paramètres clés pour expliquer le magnétisme et la rotation des étoiles. Le manuscrit est séparé en 4 parties. La première introduit le contexte et les notions clés de la dynamique des intérieurs stellaires, et en particulier, l'effet dynamo. On s'appuiera sur les connaissances détaillées que l'on a du Soleil, puis on les comparera aux autres étoiles pour distinguer ce qui lui est spécifique de ce qui est générique aux étoiles. La deuxième partie présente les résultats obtenus en utilisant le code 2D STELEM. Nous modélisons alors l'évolution du champ magnétique à grande échelle spatiale sur des temps de l'ordre de la période du cycle solaire (environ 11 ans) pour mieux comprendre l'effet dynamo qui lui a donné naissance. Nous montrons alors que les modèles solaires actuels ne sont pas en mesure de reproduire les observations lorsque l'on étend ce modèle à des étoiles en rotation rapide, sauf si l'on prend en compte le mécanisme de pompage turbulent, et sous des conditions précises. Puis, on a amélioré ces modèles cinématiques en incorporant l'effet Malkus Proctor qui prend en compte la rétroaction de la force de Lorentz sur la vitesse longitudinale. Nous montrons alors que l'on est capable de reproduire les oscillations torsionnelles solaires et de voir comment leurs caractéristiques évoluent avec le taux de rotation. La troisième partie se concentre sur les simulations numériques hautes performances 3D avec le code ASH. Contrairement au code précédent, ce dernier résoud l'intégralité des équations de la MHD. Nous avons étudié, d'abord hydrodynamiquement, comment la masse et la rotation influencent les propriétés de l'enveloppe convective, d'abord en la simulant de manière isolée, puis en prenant en compte le couplage avec la zone radiative sous jacente. Nous montrons que la dynamique est principalement régie par le nombre de Rossby et que ses caractéristiques deviennent opposées lorsque ce nombre devient supérieur à l'unité. Nous donnons également les lois d'échelles reliant les caractéristiques de l'écoulement (rotation différentielle, circulation méridienne etc.) en fonction de la masse et du taux de rotation. Enfin, la dernière partie se veut être une perspective générale du travail présenté précédemment. Nous développons des simulations 3D dans des étoiles en rotation rapide, prenant en compte le champ magnétique. Dans ces étoiles, le champ magnétique s'organise en rubans entrelacés concentrés à l'équateur et tire son énergie magnétique à la fois de l'énergie cinétique des mouvements convectifs mais aussi de la forte rotation différentielle. Enfin, nous évaluons comment l'utilisation conjointe de ces deux types de simulations (2D et 3D) peut être bénéfique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00983335 |
Date | 31 May 2013 |
Creators | Do Cao, Long |
Publisher | Université Paris-Diderot - Paris VII |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds