Return to search

Previsão de atividade solar a partir da configuração dos campos magnéticos fotosféricos

Made available in DSpace on 2016-03-15T19:38:06Z (GMT). No. of bitstreams: 1
Tatiana Ferreira Raffaelli.pdf: 1372071 bytes, checksum: 274f2a97f290810c43d6e7c6e0730d1a (MD5)
Previous issue date: 2007-09-18 / The existence of a highly reliable prediction system to detect the occurrence of large solar flares (class X) is still an unsolved problem. Despite many studies performed so far, no such a system has been found yet. In this work, we have developed a method using Bayesian Network - an Artificial Intelligence technique for the detection of giant solar flares. The Bayesian Networks software learned the relation among the variables that describe the sunspots within an active region and built a network with the relationships among them based on conditional probabilities. The studies were divided into two stages one to detect whether the sunspot would produce a big flare or not and another phase where some networks were built to discover the day the flare would occur. The first phase results were very satisfactory reaching a reliability of 77%. The second phase was more complex and the results were about 77% (with day constraints) and 54% (a wider range of days). / A existência de um sistema de previsão, de alta confiabilidade, para a detecção de ocorrência de grandes explosões solares (classe X) ainda é um problema sem solução. Existem diversos estudos nesta área, porém ainda não foi encontrado nenhum sistema eficiente. Para este trabalho foi desenvolvido um método utilizando-se redes Bayesianas, técnica de Inteligência Artificial, para a previsão das grandes flares (explosões) solares. O software de redes Bayesianas aprendeu a relação entre as variáveis que descrevem as regiões ativas e constroem uma rede com os relacionamentos entre elas baseados em probabilidades condicionais. Os estudos foram divididos em duas etapas, uma rede para detectar se a mancha solar irá produzir uma grande explosão ou não, e uma outra etapa em que foram construídas redes para prever o dia em que a explosão irá ocorrer. Os resultados obtidos na primeira etapa foram bem satisfatórios, atingindo 84% de confiabilidade. Já a segunda etapa do trabalho mostrou-se mais complexa e os resultados obtidos foram de 77% (com restrições de dias) e 54% (sem restrições de dia).

Identiferoai:union.ndltd.org:IBICT/oai:tede.mackenzie.br:tede/1480
Date18 September 2007
CreatorsRaffaelli, Tatiana Ferreira
ContributorsSilva, Adriana Valio Roque da, Marengoni, Maurício, Costa, Joaquim Eduardo Rezende
PublisherUniversidade Presbiteriana Mackenzie, Engenharia Elétrica, UPM, BR, Engenharia Elétrica
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações do Mackenzie, instname:Universidade Presbiteriana Mackenzie, instacron:MACKENZIE
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds