The Swedish Institute of Space Physics (IRF) at Kiruna focuses on research activities in the ionosphere, magnetosphere, and upper atmosphere of the planet as well as the development and production of various sensors and detectors for space research. The test facility includes the IRF SpaceLab which is equipped with multiple testing equipment. One of the testing resources available is the Solar Simulator, which consists of a vacuum chamber equipped with four metal halide lamps that produce a spectrum closely resembling that of the Sun. When any spacecraft payload or instrument is exposed to the Sun and its radiations, the most important factors to consider are the type of radiation, flux, and how the exposed material will react. Thermal designing and solar balance tests are important factors in achieving expected conditions for different missions. By testing and verifying these lamps, this solar simulator can be used not only for IRF missions but also for other institutes and private organizations that can access it. The characterization of four lamps is done in terms of temperature distribution, radiation, and power. According to preliminary experimental measured values obtained from the setup, exposed material, and its properties can be varied and the best suitable coating can be selected that includes α (absorptivity) and ϵ (emissivity) valueconsideration. The thesis is divided into four phases: Designing, Manufacturing, Testing, and Analyzing. Before entering into these phases, the basic knowledge of thermal engineering and thermal simulation is acquired. Thermal modeling and simulations are done in Airbus Defence & Space’s Systema Thermica software tool. The design phase includes designing a frame structure and a 350 x 350 mm screen in Autodesk Inventor software. Manufacturing of the frame structure and the screen was done in the IRF workshop. This screen kept hanging with the support of a frame structure which is mounted on the copper table inside the chamber. The screen is kept in the field of view of each lamp and every lamp is illuminated accordingly. The analysis is done by measuring the temperature of the back side of the screen. Temperature sensors were mounted and clamped mechanically instead of kapton tape to avoid direct contact with the screen. The obtained values are analyzed and compared with the thermally simulated values. Pressure and the temperature of the system were monitored with independent systems throughout the test procedure. This thesis report could operate as a foundation for future examination of the solar simulator’s lamps in order to determine precise efficiency.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-102347 |
Date | January 2023 |
Creators | Sonna, Mrunmayee |
Publisher | Luleå tekniska universitet, Rymdteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds