Return to search

Development of a novel magnetic photocatalyst : preparation, characterisation and implication for organic degradation in aqueous systems

Magnetic photocatalysts were synthesised by coating a magnetic core with a layer of photoactive titanium dioxide. This magnetic photocatalyst is for use in slurry-type reactors in which the catalyst can be easily recovered by the application of an external magnetic field. The first attempt at producing this magnetic photocatalyst involved the direct deposition of titanium dioxide onto the surface of magnetic iron oxide particles. The photoactivity of these Fe3O4/TiO2 was lower than that of single-phase TiO2 and was found to decrease with an increase in the heat treatment. These observations were explained in terms of an unfavourable heterojunction between the titanium dioxide and the iron oxide core. Fe ion diffusion from the iron oxide core into the titanium dioxide matrix upon heat treatment, leading to a highly doped TiO2 lattice, was also contributing to the observed low activities of these samples. These Fe3O4/TiO2 particles were found to be unstable, with photodissolution of the iron oxide phase being encountered. This photodissolution was dependent on the heat treatment applied, the greater the extent of the heat treatment, the lower the incidence of photodissolution. This was explained in terms of the stability of the iron oxide phases present, as well as the lower photoactivity of the titanium dioxide matrix. In fact, the observed photodissolution was found to be induced-photodissolution. That is, the photogenerated electrons in the titanium dioxide phase were being injected into the lower lying conduction band of the iron oxide core, leading to its reduction and then dissolution. Thus, the approach of directly depositing TiO2 onto the surface of a magnetic iron oxide core proved ineffective in producing a stable magnetic photocatalyst. The introduction of an intermediate passive SiO2 layer between the titanium dioxide phase and the iron oxide phase inhibited the direct electrical contact and hence prevented the photodissolution of the iron oxide phase. Improvements in the photoactivity were seen to be due to the inhibition of both the electronic and chemical interactions between the iron oxide and titanium dioxide phases. Preliminary optimisation experiments revealed that a thin SiO2 layer is sufficient for inhibiting the photodissolution. The thickness of the TiO2 coating was found not to have a significant effect on the photocatalytic performance of the coated particles. Finally, heat treating for 20 minutes at 450??C was sufficient for converting the titanium dioxide into a photoactive phase, longer heating times had no beneficial effect on the photoactivity.

Identiferoai:union.ndltd.org:ADTP/258509
Date January 2000
CreatorsBeydoun, Donia, Chemical Engineering & Industrial Chemistry, UNSW
PublisherAwarded by:University of New South Wales. Chemical Engineering and Industrial Chemistry
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Donia Beydoun, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0024 seconds