Return to search

Dissolution and enhanced solubilization of immiscible phase organic liquids in porous media : Theoretical, laboratory, and field investigations

This dissertation examines three different aspects of groundwater contamination by immiscible liquids, both at laboratory and field scale. The first component incorporates a study of denser than water immiscible-liquid dissolution at the laboratory scale that aims to describe the effects of immiscible liquid source-zone saturation, distribution, and length on dissolution rates. It was observed that overall immiscible-liquid saturation, distribution, and source zone length did not influence initial dissolution rates under the condition of the experiments. However, transient phase dissolution behavior, primarily observed by the heterogeneously packed columns, was significantly different to that of the homogeneously packed columns. This indicates that initial dissolution rates are comparable for these different systems, however it is demonstrated that immiscible liquid distributions (e.g., heterogeneity) can significantly effect transient dissolution rates. The second component investigates the effectiveness of a field-scale partitioning tracer test (PTT) for the measurement of the amount of denser than water immiscible liquid in the subsurface. It was demonstrated that the effectiveness of partitioning tracer test may be significantly limited by factors contributing to nonideal transport such as sorption, tracer mass, and immiscible liquid distribution. The third component examines the effectiveness of a field-scale remediation technology for the enhanced removal of denser than water immiscible liquid in the subsurface. An important component of this project was the implementation of reagent recovery and reuse, which improved the efficiency of the technology. It was demonstrated that the effectiveness of enhanced solubilization technologies for groundwater remediation may be significantly limited by the distribution of immiscible liquid in the subsurface. However, the nature of cyclodextrin (enhanced-solubilization agent) makes it an attractive option for subsurface remediation of immiscible-liquid contaminants, especially for situations where mobilization is undesirable and where the use of higher-toxicity agents is not possible.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/191265
Date January 2003
CreatorsTick, Geoffrey Ray
ContributorsBrusseau, Mark L., Yeh, T.-C. Jim, Ferre, P. A., Artiola, Janick F., Zhang, Zhihui
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeDissertation-Reproduction (electronic), text
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0014 seconds