Return to search

The Regulation of Segmentation Clock Period in Zebrafish

Oscillations are present at many different levels of biological organization. The cell cycle that directs the division of individual cells, the regular depolarization of neurons in the sinu-atrial node which underlies the regular beating of the heart, the circadian rhythms that govern the daily activity cycles of virtually all organisms, and the clocks that make entire populations of fireflies flash on and off in unison feature as prominent examples of biological clocks. During development, biological clocks regulate the patterning of growing tissues, as is the case in vertebrate somitogenesis, and potentially also in vertebrate limb outgrowth and axial segmentation of invertebrate embryos. During vertebrate segmentation, the embryonic axis is subdivided along its anterior-posterior axis into epithelial spheres of cells called somites. This rhythmic process is thought to be driven by a multicellular oscillatory gene network, the so-called segmentation clock. Oscillations of hairy and enhancer of split gene products have been proposed to constitute the core clockwork in individual cells, and these oscillators are coupled to each other by Delta-Notch intercellular signaling. The interaction of the segmentation clock with a posteriorly-moving arrest wavefront then translates the temporal information encoded by the clock into a spatial pattern of segments. In the framework of this Clock and Wavefront model, segment length is determined by both clock period and arrest wavefront velocity. How the period of the segmentation clock is regulated is presently unknown, and understanding the mechanism of period setting might yield insight into the nature and function of the segmentation clock. In this study, two different but complementary approaches were pursued to investigate how period is regulated in the zebrafish segmentation clock. First, it has been reported that zebrafish mind bomb (mib) mutant embryos form somites more slowly than their wt siblings, suggesting that Mib might be implicated in period setting. Mib is an E3 ubiquitin ligase required for ubiquitination and endocytosis of the Notch ligand Delta, and Notch signaling is impaired in mutants with defective Mib. It has been suggested that the mechanistic basis for the requirement of Delta endocytosis in Notch signaling is a need for Delta to enter a particular endocytic compartment, potentially a recycling endosome, in a ubiquitin-dependent manner, where its signaling ability might be established or amplified by an as yet unknown posttranslational modification. In the present study, Delta trafficking through the endocytic pathway was analyzed in the PSM of wt and mib embryos through colocalization studies with endocytic markers. The rationale of this approach was that if Delta gained access to a particular endocytic compartment through Mib-dependent endocytosis, the presence of Delta in this compartment would be expected to be reduced in mutants with defective Mib, thereby revealing the compartment’s identity. However, no qualitative changes in colocalization with different endocytic markers could be detected in mib mutants, and the methods available did not allow for quantification of colocalization in wt or mutant backgrounds. However, Delta colocalized with 13 markers of recycling endosomes, consistent with the hypothesis that these are functionally important in Notch signaling. More refined techniques will be necessary for a quantitative analysis of normal as compared to impaired Delta trafficking. A genetic approach to period regulation proved to be successful for the Drosophila circadian clock, where the identification of period mutants advanced the understanding of the clock’s genetic circuitry. This motivated a screen for period mutants of the segmentation clock, which was carried out by measuring somitogenesis period, segment length and arrest wavefront velocity in a pool of candidate mutants. A subset of Delta-Notch mutants, and embryos treated with a small-molecule inhibitor that impairs Notch signaling, displayed correlated increases in somitogenesis period and segment length, while there was no detectable change in arrest wavefront velocity. Combined, these findings suggested that segmentation clock period is increased in experimental conditions with impaired Delta-Notch signaling. Using a theoretical description of the segmentation clock as an array of coupled phase oscillators, the delay in the coupling and the autonomous frequency of individual cells were estimated from the direction and magnitude of the period changes. The mutants presented here are the first candidates for segmentation clock period mutants in any vertebrate. The nature of the molecular lesions in these mutants, all of which affect genes implicated in intercellular Delta-Notch signaling, suggests that communication between oscillating PSM cells is a key factor responsible for setting the period of the segmentation clock.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-ds-1228749843309-64183
Date08 December 2008
CreatorsHerrgen, Leah
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Technische Universität Dresden, Fachbereich Biologie, Technische Universität Dresden, Max-Planck Institute of Molecular Cell Biology and Genetics Dresden, Prof. Dr. Michael Brand, Dr. Andrew Oates, Prof. Dr. Michael Brand, Prof. Dr. Achim Gossler, Dr. Ewa Paluch
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf, video/quicktime, video/quicktime, video/quicktime, video/quicktime, video/quicktime, image/gif, image/gif, image/gif, application/zip

Page generated in 0.0131 seconds