Return to search

Exponential sum estimates and Fourier analytic methods for digitally based dynamical systems / Estimation de sommes d'exponentielles et méthodes d'analyse de Fourier pour les systèmes dynamiques basés sur les développements digitaux

La présente thèse a été fortement influencée par deux conjectures, l'une de Gelfond et l'autre de Sarnak.En 1968, Gelfond a prouvé que la somme des chiffres modulo m est asymtotiquement équirépartie dans des progressions arithmétiques, et il a formulé trois problèmes nouveaux.Le deuxième et le troisième problèmes traitent des sommes des chiffres pour les nombres premiers et les suites polynomiales.En ce qui concerne les nombres premiers et les carrés, Mauduit et Rivat ont résolu ces problèmes en 2010 et 2009, respectivement.Drmota, Mauduit et Rivat ont réussi généraliser le résultat concernant la suite des sommes des chiffres des carrés.Ils ont démontré que chaque bloc apparaît asymptotiquement avec la même fréquence.Selon la conjecture de Sarnak, il n'y a pas de corrélation entre la fonction de Möbius et des fonctions simples.La présente thèse traite de la répartition de suites automatiques le long de sous-suites particulières ainsi que d'autres propriétés de suites automatiques.Selon l'un des résultats principaux du présent travail, toutes les suites automatiques vérifient la conjecture de Sarnak.Moyennant une approche légèrement modifiée, nous traitons également la répartition de suites automatiques le long de la suite des nombres premiers.Dans le cadre du traitement de suites automatiques générales, nous avons mis au point une nouvelle structure destinée aux automates finisdéterministes ouvrant une vision nouvelle pour les automates et/ou les suites automatiques.Nous étendons les résultat de Drmota, Mauduit et Rivat concernant les suites digitales.Cette approche peut également être considérée comme une généralisation du troisième problème de Gelfond. / The present dissertation was inspired by two conjectures, one by Gelfond and one of Sarnak.In 1968 Gelfond proved that the sum of digits modulo m is asymptotically equally distributed along arithmetic progressions.Furthermore, he stated three problems which are nowadays called Gelfond problems.The second and third questions are concerned with the sum of digits of prime numbers and polynomial subsequences.Mauduit and Rivat were able to solve these problems for primes and squares in 2010 and 2009 respectively.Drmota, Mauduit and Rivat generalized the result concerning the sequence of the sum of digits of squares.They showed that each block appears asymptotically equally frequently.Sarnak conjectured in 2010 that the Mobius function does not correlate with deterministic functions.This dissertation deals with the distribution of automatic sequences along special subsequences and other properties of automatic sequences.A main result of this thesis is that all automatic sequences satisfy the Sarnak conjecture.Through a slightly modified approach, we also deal with the distribution of automatic sequences along the subsequence of primes.In the course of the treatment of general automatic sequences, a new structure for deterministic finite automata is developed,which allows a new view for automata or automatic sequences.We extend the result of Drmota, Mauduit and Rivat to digital sequences.This is also a generalization of the third Gelfond problem.

Identiferoai:union.ndltd.org:theses.fr/2017AIXM0042
Date21 February 2017
CreatorsMüllner, Clemens
ContributorsAix-Marseille, Technische Universität (Vienne), Rivat, Joël, Drmota, Michael
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds