Return to search

Rozvoj inverzních úloh vedení tepla řešených s využitím optimalizačních postupů a vysokého stupně paralelizace / Development of inverse tasks solved by using the optimizing procedures and large number of parallel threads

In metallurgy it is important to know a cooling efficiency of a product as well as cooling efficiency of working rolls to maximize the quality of the product and to achieve the long life of working rolls. It is possible to examine this cooling efficiency by heat transfer coefficients and surface temperatures. The surface temperature is hardly measured during the cooling. It is better to compute it together with heat transfer coefficient by inverse heat conduction problem. The computation is not easy and it uses estimated values which are verified by direct heat conduction problem. The time-consuming of this task can be several days or weeks, depends on the complexity of the model. Thus there are tendencies to shorten the computational time. This doctoral thesis considers the possible way of the computing time shortening of inverse heat conduction problem, which is the parallelization of this task and its transfer to a graphic card. It has greater computing power than the central processing unit (CPU). One computer can have more compute devices. That is why the computing time on different types of devices is compared in this thesis. Next this thesis deals with obtaining of surface temperatures for the computation by infrared line scanner and using of inverse heat conduction problem for the computing of the surface temperature and heat transfer coefficient during passing of a test sample under cooling section and cooling by high pressure nozzles.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:234249
CreatorsOndroušková, Jana
ContributorsHorský, Jaroslav
PublisherVysoké učení technické v Brně. Fakulta strojního inženýrství
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds