Return to search

Analyse bayésienne et classification pour modèles continus modifiés à zéro

Les modèles à sur-représentation de zéros discrets et continus ont une large gamme d'applications et leurs propriétés sont bien connues. Bien qu'il existe des travaux portant sur les modèles discrets à sous-représentation de zéro et modifiés à zéro, la formulation usuelle des modèles continus à sur-représentation -- un mélange entre une densité continue et une masse de Dirac -- empêche de les généraliser afin de couvrir le cas de la sous-représentation de zéros. Une formulation alternative des modèles continus à sur-représentation de zéros, pouvant aisément être généralisée au cas de la sous-représentation, est présentée ici. L'estimation est d'abord abordée sous le paradigme classique, et plusieurs méthodes d'obtention des estimateurs du maximum de vraisemblance sont proposées. Le problème de l'estimation ponctuelle est également considéré du point de vue bayésien. Des tests d'hypothèses classiques et bayésiens visant à déterminer si des données sont à sur- ou sous-représentation de zéros sont présentées. Les méthodes d'estimation et de tests sont aussi évaluées au moyen d'études de simulation et appliquées à des données de précipitation agrégées. Les diverses méthodes s'accordent sur la sous-représentation de zéros des données, démontrant la pertinence du modèle proposé.

Nous considérons ensuite la classification d'échantillons de données à sous-représentation de zéros. De telles données étant fortement non normales, il est possible de croire que les méthodes courantes de détermination du nombre de grappes s'avèrent peu performantes. Nous affirmons que la classification bayésienne, basée sur la distribution marginale des observations, tiendrait compte des particularités du modèle, ce qui se traduirait par une meilleure performance. Plusieurs méthodes de classification sont comparées au moyen d'une étude de simulation, et la méthode proposée est appliquée à des données de précipitation agrégées provenant de 28 stations de mesure en Colombie-Britannique. / Zero-inflated models, both discrete and continuous, have a large variety of applications and fairly well-known properties. Some work has been done on zero-deflated and zero-modified discrete models. The usual formulation of continuous zero-inflated models -- a mixture between a continuous density and a Dirac mass at zero -- precludes their extension to cover the zero-deflated case. We introduce an alternative formulation of zero-inflated continuous models, along with a natural extension to the zero-deflated case. Parameter estimation is first studied within the classical frequentist framework. Several methods for obtaining the maximum likelihood estimators are proposed. The problem of point estimation is considered from a Bayesian point of view. Hypothesis testing, aiming at determining whether data are zero-inflated, zero-deflated or not zero-modified, is also considered under both the classical and Bayesian paradigms. The proposed estimation and testing methods are assessed through simulation studies and applied to aggregated rainfall data. The data is shown to be zero-deflated, demonstrating the relevance of the proposed model.

We next consider the clustering of samples of zero-deflated data. Such data present strong non-normality. Therefore, the usual methods for determining the number of clusters are expected to perform poorly. We argue that Bayesian clustering based on the marginal distribution of the observations would take into account the particularities of the model and exhibit better performance. Several clustering methods are compared using a simulation study. The proposed method is applied to aggregated rainfall data sampled from 28 measuring stations in British Columbia.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/4291
Date08 1900
CreatorsLabrecque-Synnott, Félix
ContributorsAngers, Jean-François
Source SetsUniversité de Montréal
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0026 seconds