Abstract
The research was conducted as a part of the phase III of the KEEP(Kuroshio Edge Exchange Processes)program. Two strings of sediment traps were deployed simultaneously: one near the outlet of North Mien-Hua Canyon (T15), and the other at the south rim of the South Okinawa Trough (T16). The purposes are to collect settling particulates at various depths for the studies of temporal and spatial variations of the particulate flux, 210Pb activity, 210Pb flux and size distribution. The particulate fluxes showed synchronous variations among the traps deployed at different depths of the same site. In general, the particulate flux in the marginal sea areas increases with depth but the maximum values may be at the mid-depth rather than at the deepest trap and remain so for the entire mooring period as observed at T15 and T16. Unusually high particulate fluxes could occur within the same period, probably reflecting an episodic event, such as typhoon or rain storm.
210Pb activity measured from different depths at T15 and T16 increases generally with depth along with the increase of the particulate flux toward the bottom. The temporal variation of 210Pb activity is generally smaller than that of the particulate flux in terms of relative amplitude. At the outlet of the canyon, T15, the temporal mean particulate flux of each trap ranged from 0.16 to 3.3 g/m2/d(a factor of ~ 20), while the mean 210Pb activity of each trap varied from about 98 to 168 dpm/g. At T16 located at the south rim of the South Okinawa Trough, the temporal mean particulate flux ranged from 0.06 to 5.7 g/m2/d(a factor of ~ 100), while the mean 210Pb activity varied from 82 to 192 dpm/g.
The particulate 210Pb flux was smaller at T15 than at T16 because T15 has smaller particulate flux. The trapped particulates in the canyon(T1-T3) are mostly silt and sand, while the particulates collected from the Okinawa Trough(T15, T16) are mainly silt and clay. The 210Pb activity of the former is much lower than that of the latter, indicating the enrichment of 210Pb on the fine particulates. As the fine-grained particulates away from landmass have longer residence time in the ambient water, they can scavenge 210Pb more effectively.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0608100-152507 |
Date | 08 June 2000 |
Creators | Chung, Kendy |
Contributors | Y. C. Chung |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0608100-152507 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0017 seconds