Dans les disciplines de l'intelligence artificielle et de la recherche opérationnelle, on rencontre de nombreux problèmes comme l'allocation de ressources, l'ordonnancement, la, conception, le diagnostic automatisé. Ces problèmes se formulent aisément comme des problèmes de satisfaction de contraintes (CSP). Un CSP est défini comme étant un ensemble de contraintes impliquant un certain nombre de variables. L'objectif consiste simplement à trouver un ensemble de valeurs à affecter aux variables, de sorte que toutes les contraintes soient satisfaites. Dans le cas le plus général, les problèmes de satisfaction de contraintes ont un aspect fortement combinatoire qui leur confère une grande complexité. Nous nous intéressons dans le cadre de cette thèse aux problèmes de satisfaction de contraintes binaires en domaines finis. Les méthodes auxquelles nous nous intéressons pour résoudre un CSP sont, les méthodes dites incomplètes : elles font une réparation d'une configuration en parcourant de manière non systématique l'espace des configurations. Dans cette catégorie de méthodes, notre intérêt s'est plus particulièrement tourné vers les Algorithmes Evolutionnistes. Ce sont des méthodes générales d'optimisation combinatoire qui sont inspirées de la théorie de l'évolution. Dans un CSP classique, on recherche une solution, sans avoir à optimiser de fonction. Pour entrer dans le cadre des Algorithmes Évolutionnistes, on se doit de définir une fonction d'évaluation pour les CSP qui prend ses valeurs minimales sur les solutions du problème. Cette fonction pourrait être utilisée par toutes méthodes incomplètes, telles que les techniques min-conflits, GSAT et leurs variantes. Nous montrons dans cette thèse l'application de notre fonction d'évaluation pour la méthode min-conflits ainsi que pour un algorithme évolutionniste. D'un autre côté, dans le contexte plus spécifique des algorithmes génétiques, nous souhaitons guider l'évolution (i.e. recherche d'une solution), en faisant des transformations sur la population plus orientées vers le problème de satisfaction de contraintes. Nous définissons ainsi des opérateurs de mutation et de croisement spécialisés pour les CSP qui sont basés sur la structure du graphe de contraintes. Ensuite, nous incorporons le concept d'adaptation dans l'opérateur de croisement, afin d'améliorer la recherche de l'algorithme. Dans ce mémoire, nous décrivons et justifions les algorithmes mis en oeuvre, en illustrant les techniques implémentées par la résolution de problèmes de coloriage de graphe avec trois couleurs, et de CSP générés aléatoirement.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00523169 |
Date | 08 December 1997 |
Creators | Riff-Rojas, Maria-Cristina |
Publisher | Ecole Nationale des Ponts et Chaussées |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds