Return to search

The role of complement system related genes in synapse formation and specificity in the olivo-cerebellar network / Rôle des gènes liés au système du complément dans la formation et la spécificité des synapses excitatrices dans le système olivo-cérébelleux

La synaptogenèse est un processus précis : chaque type d'afférences innerve des domaines subcellulaires post-synaptiques spécifiques sur leur cible neuronale. Pour tester si cette spécificité est contrôlée par une combinaison unique de molécules à chaque synapse, j'ai utilisé le système olivo-cérébelleux comme modèle. Deux afférences excitatrices, les fibres parallèles issues des grains et les fibres grimpantes issues des neurones de l'olive inférieure, innervent des territoires distincts sur la même cible, la cellule de Purkinje. Une analyse comparative des profils d'expressions génique des grains et des neurones olivaires a montré que ces derniers expriment une plus grande diversité de protéines membranaires et sécrétées liées au système immunitaire. De plus, chaque type d'afférences exprime une combinaison spécifique de gènes liés à la voie du complément du système immunitaire inné. Parmi ceux-ci, la protéine sécrétée C1QL1, de la famille C1Q, joue un rôle instructif pour l'établissement du territoire d'innervation des fibres grimpantes sur les cellules de Purkinje. La protéine membranaire liée au complément SUSD4 assure, quant à elle, la maturation fonctionnelle et la stabilisation de ces synapses. Sachant que la protéine CBLN1 de la famille C1Q contrôle la synaptogenèse des fibres parallèles, ces résultats montrent que les différents membres de la famille C1Q sont des déterminants importants de l'identité et de la connectivité spécifique de chaque synapse excitatrice dans le cortex cérébelleux. Cette étude porte un nouvel éclairage sur l'hypothèse de la " chemoaffinité " et de sa participation à la formation de circuits neuronaux spécifiques et précis. / Synapse connectivity occurs in a precise manner such that no two types of afferents innervate the same postsynaptic subcellular domain. To test whether this specificity is controlled by a unique combination of molecules at each synapse, I used the olivo-cerebellar circuit as a model. There, two excitatory inputs, the Parallel fibers originating from granule cells and Climbing fibers originating from inferior olivary neurons, innervate distinct territories on the same target neuron, the Purkinje cell. Comparative gene expression analysis of these two inputs showed that the inferior olivary neurons express a greater diversity of genes encoding membrane and secreted proteins belonging to immune system-related pathways. Moreover, each input expresses a specific combination of complement-related genes. Among these, I identified the functional roles of two novel candidate genes specifically expressed by inferior olivary neurons. Secreted C1Q-related protein C1QL1 plays an instructive role in specifying Climbing fiber innervation territory on Purkinje cells, while membrane-bound complement control-related protein SUSD4 ensures the acquisition of proper functional properties of Climbing fiber synapses and their long-term stability. Given that C1Q-related CBLN1 promotes Parallel fiber synaptogenesis, these results show that different members of the C1Q family are important determinants of the identity and specific connectivity of each excitatory synapse in the cerebellar cortex. This study provides novel insights into the “chemoaffinity code” that controls subcellular specificity at each synapse type during the formation of neural circuits.

Identiferoai:union.ndltd.org:theses.fr/2015PA066406
Date16 September 2015
CreatorsMahesh Iyer, Keerthana
ContributorsParis 6, Selimi, Fekrije
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds