Return to search

Fully Bayesian Analysis of Switching Gaussian State Space Models

In the present paper we study switching state space models from a Bayesian point of view. For estimation, the model is reformulated as a hierarchical model. We discuss various MCMC methods for Bayesian estimation, among them unconstrained Gibbs sampling, constrained sampling and permutation sampling. We address in detail the problem of unidentifiability, and discuss potential information available from an unidentified model. Furthermore the paper discusses issues in model selection such as selecting the number of states or testing for the presence of Markov switching heterogeneity. The model likelihoods of all possible hypotheses are estimated by using the method of bridge sampling. We conclude the paper with applications to simulated data as well as to modelling the U.S./U.K. real exchange rate. (author's abstract) / Series: Forschungsberichte / Institut für Statistik

Identiferoai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:epub-wu-01_a43
Date January 2000
CreatorsFrühwirth-Schnatter, Sylvia
PublisherDepartment of Statistics and Mathematics, WU Vienna University of Economics and Business
Source SetsWirtschaftsuniversität Wien
LanguageEnglish
Detected LanguageEnglish
TypeWorking Paper, NonPeerReviewed
Formatapplication/pdf
Relationhttp://epub.wu.ac.at/812/

Page generated in 0.0015 seconds