To enhance mechanical and/or electrical properties of composite materials used in additive manufacturing, nanoparticles are often time deposited to form nanocomposite layers. To customize the mechanical and/or electrical properties, the thickness of such nanocomposite layers must be precisely controlled. A thickness model of filter cakes created through a spray assisted vacuum filtration is presented in this paper, to enable the development of advanced thickness controllers. The mass transfer dynamics in the spray atomization and vacuum filtration are studied for the mass of solid particles and mass of water in differential areas, and then the thickness of a filter cake is derived. A two-loop nonlinear constrained optimization approach is used to identify the unknown parameters in the model. Experiments involving depositing carbon nanofibers in a sheet of paper are used to measure the ability of the model to mimic the filtration process.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2462 |
Date | 01 January 2015 |
Creators | Mark, August |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0018 seconds