Return to search

Spacecraft Guidance Techniques for Maximizing Mission Success

Traditional spacecraft guidance techniques have the objective of deterministically minimizing fuel consumption. These traditional approaches to guidance are developed independently of the navigation system, and without regard to stochastic effects. This work presents and demonstrates a new approach to guidance design. This new approach seeks to maximize the probability of mission success by minimizing the variance of trajectory dispersions subject to a fuel consumption constraint. The fuel consumption constraint is imposed by formulating the dynamics in terms of a steering command, and placing a constraint on the final time. Stochastic quadratic synthesis is then used to solve for the nominal control along with the estimator and feedback gains. This new approach to guidance is demonstrated by solving a simple Zermelo boat problem. This example shows that a significant reduction in terminal dispersions is possible with small increases to fuel budgeted for the maneuver.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-3175
Date01 May 2014
CreatorsRobinson, Shane B.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0025 seconds