Due to the continuous work in the automobile industry to reduce the environmental impact, reduce fuel consumption and increase efficiency, new technologies need to be developed and implemented in vehicles. For spark ignited engines, one technology that has received more attention in recent years is long route Exhaust Gas Recirculation (EGR), which means that exhaust gases after the turbine are transported back to the volume before the compressor in the air intake system of the engine. In this work, the components of the long route EGR system is modeled with mean value engine models in Simulink, and implemented in a existing Simulink engine model. Then different methods for estimating the mass flow over the long route EGR system are compared, and the transport delays for the recirculated exhaust gases in the engines air intake system are modeled. This work is based on measurements done on an engine rig, on which a long route EGR system was installed. Finally, some ideas on how a long route EGR system on a gasoline engine can be controlled are presented based on the results in this thesis work.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-131102 |
Date | January 2016 |
Creators | Klasén, Erik |
Publisher | Linköpings universitet, Fordonssystem |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0014 seconds