Return to search

A Ghost Fluid Method for Modelling Liquid Jet Atomization

Liquid jet atomisation has a wide variety of application in areas such as injectors in automobile and launch vehicle combustors, spray painting, ink jet printing etc. Understanding physical mechanisms involved in the primary regime of atomisation in combustors is extremely challenging due to the lack of experimental techniques that can reliably provide measurements of gas and liquid velocity fields in this region. Experimental studies have so far been mostly restricted to conditions at atmospheric conditions rather than technically relevant operating pressures. We present a computational fluid dynamics based modelling approach that can capture the evolution of the flow field in the dense primary atomization region of the spray as part of the present thesis work.
A fully compressible 3D flow solver is coupled with an interface tracking solver based on level set method. A generalised mathematical formulation for thermodynamic models is implemented in flow solver enabling easy switching between various equations of states. Solvers are parallelised to run on large number of processors and are shown to have good scalability. A modification to the level set method which greatly reduces mass conservation inaccuracies when compared with existing state-of-art baseline schemes has been developed during this work. The Ghost uid Method is used for applying matching conditions at the Interface. The liquid and gas phases are modelled using the perfect gas and Tait equations of state respectively. Several validation studies have been carried out to ensure quantitative accuracy of the solver implemented. Results from canonical Rayleigh Taylor instability simulations shows good agreement with reported results in literature.
Finally, results for unsteady evolution of a water-air jet at a liquid to gas density ratio of 10 are shown. Physical mechanisms causing the initial droplet formation are discussed in detail. Droplet feedback is identified as one of the important mechanisms in triggering liquid core instabilities. Comparisons between droplet size distributions obtained from computations are carried out. Vorticity dynamics is used to understand hole and ligament formation from liquid core. Effect of numerical droplets on the simulation results is also looked at in detail.

Identiferoai:union.ndltd.org:IISc/oai:etd.iisc.ernet.in:2005/3572
Date January 2017
CreatorsKiran, S
ContributorsSantosh, Hemchandra
Source SetsIndia Institute of Science
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationG28425

Page generated in 0.0018 seconds