Return to search

確認PIAS1在促進大鼠空間學習與記憶的嶄新角色之探討 / Identification of a novel role of PIAS1 in facilitation of spatial memory formation in rats

本實驗室於先前利用莫氏水迷津試驗篩選學習快與學習慢的大白鼠,取出其海馬迴組織並進行聚合酶連鎖反應差異顯示(PCR differential display),結果顯示學習快與學習慢的大白鼠背側海馬迴之間共有98個cDNA片段有差異表現。把這些cDNA片段進行定序並利用BLAST資料庫比對,其中一個cDNA片段為大白鼠的pias1 [protein inhibitor of activated STAT1 (signal transducer and activator of transcription 1)] 基因。為了瞭解pias1基因的表現是否和空間學習有所關聯,隨機把大白鼠分成兩組,一組為有訓練組別(有空間線索與隱藏式平台),另一組為無訓練的組別(沒有平台,作為游泳的控制組)同時進行莫氏水迷津學習試驗。試驗完畢,取出海馬迴組織進行即時定量聚合酶連鎖反應與西方墨點法來分析PIAS1的mRNA與蛋白質的表現。結果顯示有水迷津訓練的大白鼠,其PIAS1的mRNA與蛋白質表現皆明顯的高於無訓練的組別。為了更進一步確認PIAS1在空間學習中所扮演的角色,我們利用基因轉染的技術,轉染PIAS1 siRNA至大白鼠海馬迴CA1區域抑制PIAS1的表現。我們發現轉染PIAS1 siRNA至CA1區域會抑制大白鼠在水迷津的行為表現,然而轉染野生型的PIAS1質體基因至CA1區域卻會增進水迷津試驗的學習能力,同時我們也以西方墨點法發現,當轉染PIAS1 siRNA會增加STAT1 Tyr701的磷酸化,而轉染PIAS1 WT則會抑制STAT1 Tyr701的磷酸化。為了探討PIAS1促進記憶形成的分子機制,我們發現當轉染突變型的STAT1 Y701F質體基因至CA1區域,會抑制PIAS1 siRNA所造成記憶的損害。這些實驗結果代表著PIAS1會抑制STAT1 Tyr701的磷酸化,而PIAS1促進記憶的形成可能是藉由抑制STAT1 Tyr701的磷酸化而達成。另外,我們也單獨轉染突變型的STAT1 Y701F質體基因至CA1區域,水迷津實驗結果顯示會促進空間記憶的形成。目前PIAS1在免疫的角色已有許多研究證實,但是本篇研究是第一個提出PIAS1會參與哺乳類動物學習與記憶形成探討。 / Our laboratory has previously identified 98 cDNA fragments by using PCR differential display from rat dorsal hippocampus that are differentially expressed between fast learners and slow learners from the water maze learning task. After sequencing and BLAST analysis, one of these cDNA fragments encodes the rat pias1 [protein inhibitor of activated STAT1 (signal transducer and activator of transcription 1)] gene. In order to determine whether pias1 gene expression is associated with spatial learning, naïve rats were randomly assigned to the trained group (with visual cues and platform been present) and the non-trained group (without the platform as the swimming control). The dorsal hippocampus from these animals was dissected out at the end of the training and was subjected to RNA and protein extraction for real-time PCR and Western blot analysis of PIAS1 expression, respectively. Results revealed that the pias1 mRNA level and protein level was both higher in the hippocampus of trained rats than non-trained rats. To further examine the role of PIAS1 involved in spatial learning and memory, the specific PIAS1 siRNA was used to knockdown the expression of PIAS1 in rat hippocampal CA1 region. We found that transfection of PIAS1 siRNA to the CA1 area impaired water maze performance, whereas transfection of the wild-type PIAS1 DNA plasmid to the CA1 area facilitated water maze performance in rats. Meanwhile, PIAS1 siRNA increased STAT1 phosphorylation at Tyr701 whereas PIAS1 WT decreased STAT1 phosphorylation at this residue. In the examination of molecular mechanism underlying PIAS1-mediated memory facilitation, we have found that transfection of the STAT1 Y701F mutant plasmid antagonized the memory-impairing effect of PIAS1 siRNA, whereas transfection of STAT1 Y701F alone facilitated spatial memory formation. These results together suggest that one of the molecular mechanisms underlying PIAS1-mediated memory facilitation is through decreased STAT1 phosphorylation at Tyr701. All these manipulations did not affect visible platform learning in rats. In addition to the well documented role of PIAS1 in the immune system, here we have been the first to demonstrate a novel role of PIAS1 involved in spatial memory formation in rats.

Identiferoai:union.ndltd.org:CHENGCHI/G0096754001
Creators劉彥呈
Publisher國立政治大學
Source SetsNational Chengchi University Libraries
Language中文
Detected LanguageEnglish
Typetext
RightsCopyright © nccu library on behalf of the copyright holders

Page generated in 0.0022 seconds