abstract: Geographically Weighted Regression (GWR) has been broadly used in various fields to
model spatially non-stationary relationships. Classic GWR is considered as a single-scale model that is based on one bandwidth parameter which controls the amount of distance-decay in weighting neighboring data around each location. The single bandwidth in GWR assumes that processes (relationships between the response variable and the predictor variables) all operate at the same scale. However, this posits a limitation in modeling potentially multi-scale processes which are more often seen in the real world. For example, the measured ambient temperature of a location is affected by the built environment, regional weather and global warming, all of which operate at different scales. A recent advancement to GWR termed Multiscale GWR (MGWR) removes the single bandwidth assumption and allows the bandwidths for each covariate to vary. This results in each parameter surface being allowed to have a different degree of spatial variation, reflecting variation across covariate-specific processes. In this way, MGWR has the capability to differentiate local, regional and global processes by using varying bandwidths for covariates. Additionally, bandwidths in MGWR become explicit indicators of the scale at various processes operate. The proposed dissertation covers three perspectives centering on MGWR: Computation; Inference; and Application. The first component focuses on addressing computational issues in MGWR to allow MGWR models to be calibrated more efficiently and to be applied on large datasets. The second component aims to statistically differentiate the spatial scales at which different processes operate by quantifying the uncertainty associated with each bandwidth obtained from MGWR. In the third component, an empirical study will be conducted to model the changing relationships between county-level socio-economic factors and voter preferences in the 2008-2016 United States presidential elections using MGWR. / Dissertation/Thesis / Doctoral Dissertation Geography 2020
Identifer | oai:union.ndltd.org:asu.edu/item:62657 |
Date | January 2020 |
Contributors | Li, Ziqi (Author), Fotheringham, A. Stewart (Advisor), Goodchild, Michael F. (Committee member), Li, Wenwen (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 149 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds