Return to search

Macroinvertebrate Community Response to Spatial Patterns of Water Quality and Habitat within Mining-influenced Headwater Streams of Appalachia

Benthic macroinvertebrates are heavily relied on to indicate stream condition because of their ease of sampling, broad span of sensitivities to pollution among taxa, and diverse life histories that utilize various habitats and environmental conditions. Surface-coal mining in central Appalachia often results in salinization of headwater streams, with documented responses in macroinvertebrate communities across streams that vary in specific conductance (SC), an index of degree of salinization. Mining-influenced headwater streams can also exhibit within-stream spatial variation in SC, frequently via dilution with downstream distance from mining. However, the extent to which coal-mining alters downstream patterns in water chemistry and macroinvertebrate communities is largely unknown. This study aimed to determine macroinvertebrate community responses to physical and chemical gradients within six Appalachian headwater streams (four mining-impacted, two reference). Streams were sampled for benthic macroinvertebrates, habitat characteristics, and water chemistry in fall 2021 and spring 2022 at six-to-nine locations per stream over a range of 1.5 – 3 km. Mining-impacted streams exhibited greater spatial variation in macroinvertebrate community composition compared to reference streams, particularly in spring. Bray-Curtis Community similarity determined highly-impacted streams experienced the greatest within-stream shifts in community similarity. Metrics of macroinvertebrate communities and community similarity showed some correlation with SC at within-stream scales, particularly in highly impacted streams in spring; however, such trends were much fewer and weaker compared to relationships among streams when collectively examining communities. Redundancy Analysis (RDA) and Variation Partitioning (VP) indicated water quality, habitat, and location do overlap in explanation of community variation although they often additionally explain variance in unique ways. Significant variables identified by RDA within at least two of the six streams include channel slope, streamwater nutrients and hardness, stream channel embeddedness, and percent fines comprising the streambed. Redundancy Analysis also indicated 18 key macroinvertebrate taxa in study streams responding to location within stream, habitat, and water quality. Of those 18 taxa shredders, collectors, and clingers were most frequently impacted. Improved understanding of the spatial scale of coal-mining influences on headwater stream characteristics will help inform bioassessment protocols to most accurately assess stream condition, and inform remediation efforts within the central Appalachian region and in other salinized stream systems. / Master of Science / Small streams (or headwater streams) originating in the central Appalachian Mountains harbor a variety of unique organisms and are essential to the quantity and quality of downstream freshwater for fishing, recreation, and other uses. Coal mining processes, including disturbance of coal-bearing bedrock, often increases the streams salinity by adding pollutants that elevate dissolved minerals, or salts. Salinization of streams can come from a variety of sources in addition to coal mining such as de-icing road salts and crop irrigation and is of growing concern regarding its impacts to the quality of freshwater available for wildlife and human use. A common way to determine stream health is by identifying which aquatic insects (or macroinvertebrates) are present in a stream, because different groups are present based on the type and intensity of a variety of pollutants. Previous studies determined stream health by identifying insects from one location in a stream and comparing it to others. Stream's habitat and water quality naturally change as they join with larger rivers and flow to lower elevations causing different macroinvertebrates to be present at locations within streams. This study aimed to determine how changes along stream distances may be different in streams salinized from coal mining. The objectives of this study were to determine if one sample is adequate to represent the entire condition of a headwater stream. Six streams were sampled for macroinvertebrate, water quality, and habitat at six-to-nine locations within each stream over distances of ca. 2,000 m. Four streams were impacted by mining, of which two were highly impacted and two were impacted to a low-level; the last two streams were unimpacted to represent reference condition. The study found the type and number of macroinvertebrates within streams were changing least within reference streams and most in highly impacted streams. Macroinvertebrate communities in highly-impacted streams changed more within streams because they had high concentrations of dissolved salts upstream near the source of coal-mining pollution and these salts diluted with distance downstream, most likely due to fresh spring water contributions with minimal dissolved salts. Therefore, highly-impacted headwater streams experience greater environmental and macroinvertebrate variability indicating more than one sample location may be helpful in accurately assessing what macroinvertebrates inhabit the stream length of interest. Ensuring accurate sampling technique to determine stream condition is essential to our understanding of stream health and how to remediate and monitor impacts of salinization on our freshwater resources.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/115370
Date07 June 2023
CreatorsMcMillan, Melanie
ContributorsForest Resources and Environmental Conservation, Schoenholtz, Stephen H., McLaughlin, Daniel L., Pond, Gregory J., Entrekin, Sally
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf, application/pdf
CoverageUnited States
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0024 seconds