Efficient large-scale scientific computing requires efficient code, yet optimizing code to render it efficient simultaneously renders the code less readable, less maintainable, less portable, and requires detailed knowledge of low-level computer architecture, which the developers of scientific applications may lack. The necessary knowledge is subject to change over time as new architectures, such as GPGPU architectures like CUDA, which require very different optimizations than CPU-targeted code, become more prominent. The development of scientific cloud computing means that developers may not even know what machine their code will be running on when they are developing it.
This work takes steps towards automating the generation of code variants which are automatically optimized for both execution environment and input dataset. We demonstrate that augmenting an autotuning framework with a performance database which captures metadata about environment and input and performing decision tree learning over that data can help more fully automate the process of enhancing software performance.
Identifer | oai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/12434 |
Date | January 2012 |
Creators | Chaimov, Nicholas, Chaimov, Nicholas |
Contributors | Malony, Allen |
Publisher | University of Oregon |
Source Sets | University of Oregon |
Language | en_US |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Rights | All Rights Reserved. |
Page generated in 0.0019 seconds