The clinically used antibiotic lincomycin consists of an amino-sugar and an amino-acid moiety. The incorporated amino-acid 4-propyl-L-prolin (PPL) is very important for the linomycin bioactivity, as evidenced by the lower activity of the related antibiotic celesticetin, which incorporates proteinogenic L-prolin instead. Gene clusters for the biosynthesis of both lincosamides are published and reflect a common basis - biosynthesis of amino-sugar precursor and condensation reactions. Additionally, in the biosynthetic gene cluster for lincomycin there is a sub-cluster of genes encoding the biosynthesis of PPL, the alkylated proline derivative (APD). PPL has a common biosynthetic origin with other APDs that are part of the structures of antitumor pyrrolobenzodiazepines and the signal molecule hormaomycin, which is also reflected in the presence of homologous genes in their gene clusters. The acquired knowledge on PPL biosynthesis thus can be applied to a larger group of natural products. The first overall concept of APD biosynthesis was published forty years ago. The milestone was the year 1995 when the gene cluster for lincomycin biosynthesis was published and specific gene products have been proposed for individual biosynthetic steps. The functional proof of proteins has been performed so far just...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:437111 |
Date | January 2020 |
Creators | Jirásková, Petra |
Contributors | Janata, Jiří, Čejková, Alena, Fišer, Radovan |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds