Cette thèse expérimentale explore les propriétés du point critique de la phase pseudogap dans le diagramme de phase des cuprates supraconducteurs. Dans une première partie, j’expose un état de l’art sur les connaissances du diagramme de phases température-dopage (T-p) de ces systèmes. Des études récentes montrent une chute importante de la densité de porteurs électroniques au voisinage du point critique suggérant une reconstruction de la surface Fermi. Pour comprendre la nature exacte de la transition de phases liée à cette reconstruction, j’ai réalisé des mesures complémentaires de transport thermique et de chaleur spécifique sous champ magnétique intense sur les familles La1.8-xSrxEu0.2CuO4 et La1.6-xSrxNd0.4CuO4.Dans une deuxième partie, après une introduction théorique sur la chaleur spécifique et le transport thermique, je détaille comment ces deux grandeurs ont été mesurées. En particulier, une technique originale de mesures de la chaleur spécifique a été mise au point pour combiner haute résolution et précision absolue en champ magnétique intense et basse température. Différents modèles thermiques et électroniques ont été développés pour comprendre et analyser les mesures et ont permis d’optimiser les différents montages de chaleur spécifique selon les gammes de température.Dans une troisième partie, je présente l’ensemble des résultats obtenus en transport thermique et chaleur spécifique. Le transport thermique confirme la chute de la densité de porteur dans l’état normal (sans supraconductivité) des cuprates déjà observée en transport électrique sous champ intense. Par ailleurs, j ‘ai montré que cette chute existe également au sein de la phase supraconductrice (à champ magnétique nul), montrant qu’elle n’est influencée ni par la présence de la supraconductivité ni par le champ magnétique. Dans l’état normal, la loi de Wiedemann-Franz est respectée prouvant le caractère métallique de la phase pseudogap.La chaleur spécifique électronique montre un comportement non classique à proximité du point critique. Ce comportement anormal est caractérisé par une dépendance logarithmique en fonction de la température au dopage critique p* correspondant à la chute du nombre de porteurs. De plus, ces mesures suggèrent une divergence de la masse effective à p* en fonction du dopage. Ces deux observations sont la signature d’un point critique quantique localisé à T = 0 et p = p* dont l’origine est discutée dans la dernière partie. Les différentes classes d’universalités possibles sont discutées et une comparaison avec d’autres composés (fermions lourds, pnictures) possédant un point critique quantique est présentée. / This experimental PhD thesis explores the properties of the pseudogap critical point in the phase diagram of superconducting cuprates. In a first part, I present a state of the art on the knowledge of the temperature-doping (T-p) phase diagram of these systems. Recent studies show a dramatic drop in the electronic carrier density near the critical point, suggesting a Fermi surface reconstruction. To understand the exact nature of the phase transition related to this reconstruction, I performed complementary high magnetic field measurements of thermal transport and specific heat on La1.8-xSrxEu0.2CuO4 and La1.6-xSrxNd0.4CuO4 cuprates.In a second part, after a theoretical introduction on specific heat and thermal transport, I detail how these two quantities were measured. In particular, an original technique for measuring specific heat has been developed to combine high resolution and absolute accuracy in high magnetic field and low temperature. Different thermal and electronic models have been developed to understand and analyze the measurements in order to optimize the different set-ups according to the temperature range.In a third part, I present the results obtained in thermal transport and specific heat. Thermal transport confirms the drop in carrier density in the normal state (without superconductivity) of cuprates, already observed in high magnetic field electrical transport. Moreover, this drop also exists within the superconducting phase (in zero magnetic field), showing that it is neither influenced by the presence of superconductivity nor by the magnetic field. In the normal state, the Wiedemann-Franz low is satisfied, proving the metallic character of the pseudogap phase.Electronic specific heat shows non-classical behavior in the vicinity of the critical point. This abnormal behavior is characterized by a logarithmic dependence as a function of temperature at the critical doping p *, corresponding to the drop in the carrier density. Moreover, these measurements suggest a divergence of the effective mass at p * as a function of doping. These two observations are the signature of a quantum critical point located at T = 0 and p = p *, whose origin is discussed in the last part. I discuss the possible universality classes, and I compare with others compounds (heavy fermions, pnictides) which present a quantum critical point.
Identifer | oai:union.ndltd.org:theses.fr/2017GREAY031 |
Date | 25 October 2017 |
Creators | Michon, Bastien |
Contributors | Grenoble Alpes, Université de Sherbrooke (Québec, Canada), Klein, Thierry, Marcenat, Christophe, Taillefer, Louis |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds