In instances of mass fatality, such as plane crashes, natural disasters, or terrorist attacks, investigators may encounter hundreds or thousands of DNA specimens representing victims. For example, during the January 2010 Haiti earthquake, entire communities were destroyed, resulting in the loss of thousands of lives. With such a large number of victims the discovery of family pedigrees is possible, but often requires the manual application of analytical methods, which are tedious, time-consuming, and expensive. The method presented in this thesis allows for automated pedigree discovery by extending Link Discovery Tool (LDT), a graph visualization tool designed for discovering linkages in large criminal networks. The proposed algorithm takes advantage of spatial clustering of graphs of DNA specimens to discover pedigree structures in large collections of specimens, saving both time and money in the identification process.
Identifer | oai:union.ndltd.org:UTENN/oai:trace.tennessee.edu:utk_gradthes-1626 |
Date | 01 May 2010 |
Creators | Haun, Alex Brian |
Publisher | Trace: Tennessee Research and Creative Exchange |
Source Sets | University of Tennessee Libraries |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses |
Page generated in 0.0044 seconds