Return to search

Elliptic theory on manifolds with nonisolated singularities : III. The spectral flow of families of conormal symbols

When studyind elliptic operators on manifolds with nonisolated singularities one naturally encounters families of conormal symbols (i.e. operators elliptic with parameter p ∈ IR in the sense of Agranovich-Vishik) parametrized by the set of singular points. For homotopies of such families we define the notion of spectral flow, which in this case is an element of the K-group of the parameter space. We prove that the spectral flow is equal to the index of some family of operators on the infinite cone.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:2638
Date January 2002
CreatorsNazaikinskii, Vladimir, Savin, Anton, Schulze, Bert-Wolfgang, Sternin, Boris
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypePreprint
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0017 seconds